精英家教网 > 初中数学 > 题目详情
1.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形的面积为10,且分别满足以下要求:

(1)在图1中画一个直角三角形ABC;
(2)在图2中画一个钝角等腰三角形ABC;
(3)图2中△ABC的周长为10+4$\sqrt{5}$.(请直接写出答案)

分析 (1)在图1中画出直角边为5和4的直角三角形即为所求;
(2)在图2中画出腰长为5的钝角等腰三角形ABC即为所求;
(3)先根据勾股定理得到AC的长,再根据周长的定义求解即可.

解答 解:(1)如图1所示:
(2)如图2所示:
(3)AC=$\sqrt{{4}^{2}+{8}^{2}}$=4$\sqrt{5}$,
△ABC的周长为5+5+4$\sqrt{5}$=10+4$\sqrt{5}$.
故答案为:10+4$\sqrt{5}$.

点评 本题考查了勾股定理、直角三角形、钝角等腰三角形、及三角形的面积,属于基础题,注意各个知识点的掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,在矩形ABCD中,AB=6,BC=8,G为AD中点,若E为AB边上一动点,当△CGE的周长为最小值时,则AE的长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在下列各组数中,是勾股数的一组是(  )
A.0.3,0.4,0.5B.4,5,6C.$\frac{3}{5}$,$\frac{4}{5}$,1D.24,45,51

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列二次根式中属于最简二次根式的是(  )
A.$\sqrt{24}$B.$\sqrt{0.3}$C.$\sqrt{\frac{1}{3}}$D.$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.(1)用代入法求解$\left\{\begin{array}{l}{2x+3y=16}\\{x+4y=13}\end{array}\right.$
(2)用加减消元法求解$\left\{\begin{array}{l}{5x-6y=-3}\\{7x-4y=9}\end{array}\right.$
(3)$\left\{\begin{array}{l}{x+y+z=4}\\{2x-y+z=3}\\{3x-2y-3z=-5}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,直线l1的解析式为y=-2x+3,且l1与x轴交于点D,直线l2经过点A(4,0)、B(3,-1),直线l1、l2交于点C.
(1)点D的坐标:($\frac{3}{2}$,0);(直接写出结果)
(2)△ADC的面积为:$\frac{25}{12}$;(直接写出结果)
(3)试问在y轴上是否存在一点P,使得△PAC的周长最小?若存在,求出点P的坐标和最小周长;若不存在,请说明理由.
(4)试问:在直线l1上是否存在一点Q,使得△BCD的面积等于△ACQ的面积$\frac{1}{5}$?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系中,O为坐标原点,抛物线y=ax2-ax+6与x轴负半轴交于点A,与x轴的正半轴交于点B,且AB=7.
(1)如图1,求a的值;
(2)如图2,点P在第一象限内抛物线上,过P作PH∥AB,交y轴于点H,连接AP,交OH于点F,设HF=d,点P的横坐标为t,求d与t之间的函数关系式,并直接写出t的取值范围;
(3)如图3,在(2)的条件下,当PH=2d时,将射线AP沿着x轴翻折交抛物线于点M,在抛物线上是否存在点N,使∠AMN=45°,若存在,求出点N的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,△ABC内接于⊙O,AB=AC,过点A作AD⊥AB交⊙O于点D,交BC于点E,点F在DA的延长线上,且∠ABF=∠C.
(1)求证:BF是⊙O的切线;
(2)若AD=4,cos∠ABF=$\frac{4}{5}$,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.式子$\frac{\sqrt{x-2}}{x-3}$在实数范围内有意义,则x的取值范围是(  )
A.x>3B.x≥2 且x≠3C.x<2 且x≠3D.x≤2

查看答案和解析>>

同步练习册答案