精英家教网 > 初中数学 > 题目详情
14.如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.
如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.
若小明从编号为4的点开始,第1次“移位”后,他到达编号为3的点,…,第2016次“移位”后,他到达编号为4的点.

分析 从编号为4的点开始走4段弧:4→5→1→2→3,即可得出结论;依次求出第2,3,4,5次的结合寻找规律,根据规律分析第2016次的编号即可.

解答 解:从编号为4的点开始走4段弧:4→5→1→2→3,所以第一次“移位”他到达编号为3的点;
第二次移位后:3→4→5→1,到编号为1的点;
第三次移位后:1→2,到编号为2的点;
第四次移位后:2→3→4,回到起点;
可以发现:他的位置以“3,1,2,4,”循环出现,
2016÷4=504,整除,所以第2016次移位后他的编号与第四次相同,到达编号为4的点;
故答案为:3,4.

点评 此题主要考查循环数列规律的探索与应用,根据已知求出部分数据找到循环周期是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.当x=-2时,分式$\frac{x-1}{2x+1}$的值为1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若△ABC∽△DEF,则AC=5,DF=1.5,则△ABC∽△DEF的相似比为(  )
A.$\frac{3}{10}$B.$\frac{10}{3}$C.$\frac{7}{10}$D.$\frac{10}{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.在下列几何体中,三视图中的三个视图的面积和的2倍与这个几何体的表面积有可能相等的有(  )
①长方体;②三棱柱;③圆锥;④圆柱.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则(  )
A.b+c<0B.|b|<|c|C.|a|>|b|D.abc<0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.操作与探究
列代数式:比x的2倍少4的数记作A,则A=2x-4
比$\frac{1}{2}x$的相反数多2的数记作B,则B=$-\frac{1}{2}x+2$.
(1)根据所给x的值求上述代数式的值并填入表格:
x01234
A
B
(2)观察归纳:代数式A的值随x的增大而增大,代数式B的值随x的增大而减小(填“增大”或“减小”)当A>B时,整数x的最小值是3.
(3)若A和B的值相差3,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读下列材料:
利用完全平方公式,可以将多项式ax2+bx+c(a≠0)变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c的配方法.
运用多项式的配方法及平方差公式能对一些多项式进行分解因式.
例如:x2+11x+24=${x^2}+11x+{(\frac{11}{2})^2}-{(\frac{11}{2})^2}$+24
=${(x+\frac{11}{2})^2}-\frac{25}{4}$
=$(x+\frac{11}{2}+\frac{5}{2})(x+\frac{11}{2}-\frac{5}{2})$
=(x+8)(x+3)
根据以上材料,解答下列问题:
(1)用多项式的配方法将x2+8x-1化成(x+m)2+n的形式;
(2)下面是某位同学用配方法及平方差公式把多项式x2-3x-40进行分解因式的解答过程:

老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“”标画出来,然后写出完整的、正确的解答过程:
(3)求证:x,y取任何实数时,多项式x2+y2-2x-4y+16的值总为正数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.高港花卉中心销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为了扩大销量,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆.
(1)要使得每天利润达到1200元,则每盆兰花售价应定为多少元?
(2)如果该店每天兰花的进货成本不超过5000元,要使得每天利润达到1200元,则每盆兰花售价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列等式错误的是(  )
A.$\sqrt{{{(-2)}^2}}=2$B.$\root{3}{{{{({-2})}^3}}}=-2$C.$\sqrt{\frac{1}{2}}=\frac{{\sqrt{2}}}{2}$D.$\sqrt{(-3)×({-2})}=\sqrt{-3}×\sqrt{-2}$

查看答案和解析>>

同步练习册答案