精英家教网 > 初中数学 > 题目详情

【题目】若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是(
A.抛物线开口向上
B.抛物线的对称轴是x=1
C.当x=1时,y的最大值为﹣4
D.抛物线与x轴的交点为(﹣1,0),(3,0)

【答案】C
【解析】解:∵抛物线过点(0,﹣3), ∴抛物线的解析式为:y=x2﹣2x﹣3.
A、抛物线的二次项系数为1>0,抛物线的开口向上,正确.
B、根据抛物线的对称轴x=﹣ =﹣ =1,正确.
C、由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为﹣4,而不是最大值.故本选项错误.
D、当y=0时,有x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0).正确.
故选C.
【考点精析】认真审题,首先需要了解二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是(  )

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,∠B=∠CAD.
(1)求证:AC是⊙O的切线;
(2)若点E是 的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面计算+++…+的过程,然后填空.

解:=-),=-),…,=-),

+++…+

=-)+-)+-)+…+-

=-+-+-+…+-

=-

=

以上方法为裂项求和法,请参考以上做法完成:

(1)+=______;

(2)+++…+x=时,最后一项x=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知代数式(ax3)(2x4)x2b化简后,不含x2项和常数项.

(1)ab的值;

(2)(2ab)2(a2b)(a2b)3a(ab)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰ABC中,AB=AC,∠BAC=45°,CDABC的高,P是线段AC(不包括端点AC)上一动点,以DP为一腰,D为直角顶点(DPE三点逆时针)作等腰直角DPE,连接AE

(1)如图1,点P在运动过程中,EAD=______,写出PCAE的数量关系;

(2)如图2,连接BE.如果AB=4,CP=,求出此时BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.

(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:

(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:
(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足 ,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG , SAGH分别表示四边形BCHG和△AGH的面积,试探究 的最大值.

查看答案和解析>>

同步练习册答案