【题目】如图,在平面直角坐标系中放置5个正方形,点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O﹦60,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是( )
A. B.
C.
D.
【答案】D
【解析】
根据两直线平行,同位角相等可得∠B3C3O=∠B2C2O=∠B1C1O=60°,然后解直角三角形求出OC1、C1E、E1E2、E2C2、C2E3、E3E4、E4C3,再求出B3C3,过点A3延长正方形的边交x轴于M,过点A3作A3N⊥x轴于N,先求出A3M,再解直角三角形求出A3N,得出点A3到x轴的距离.
解:如图,∵B1C1∥B2C2∥B3C3,
∴∠B3C3O=∠B2C2O=∠B1C1O=60°,
∵正方形A1B1C1D1的边长为1,
∴OC1=,
C1E=,
E1E2=,
E2C2=,
C2E3=E2B2=,
E3E4=,
E4C3=,
∴B3C3=2E4C3=2×,
过点A3延长正方形的边交x轴于M,过点A3作A3N⊥x轴于N,
则A3M=,
A3N=A3Msin60°=,
∴点A3到x轴的距离是:,
故选:D.
科目:初中数学 来源: 题型:
【题目】在数学课上,甲、乙、丙、丁四位同学共同研究二次函数y=x2﹣2x+c(c是常数).甲发现:该函数的图象与x轴的一个交点是(﹣2,0);乙发现:该函数的图象与y轴的交点在(0,﹣4)上方;丙发现:无论x取任何值所得到的y值总能满足c﹣y≤1;丁发现:当﹣1<x<0时,该函数的图象在x轴的下方,当3<x<4时,该函数的图象在x轴的上方.通过老师的最后评判得知这四位同学中只有一位同学发现的结论是错误的,则该同学是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠A=80°,点D,E分别在边AB,AC上,且DA=DE=CE.
(1)求作点F,使得四边形BDEF为平行四边形;(要求:尺规作图,保留痕迹,不写作法)
(2)连接CF,写出图中经过旋转可完全重合的两个三角形,并指出旋转中心和旋转角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:级:优秀;
级:良好;
级:及格;
级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是 ;
(2)如图中的度数是 ,并把如图条形统计图补充完整;
(3)测试老师想从4位同学(分别记为,其中
为小明)中随机选择两位同学了解训练情况,请用列表或画树形图的方法求出选中小明概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=mx+2与x轴、y轴分别交于点A(-1,0)和点B,与反比例函数的图像在第一象限内交于C(1,c).
(1)求m的值和反比例函数的表达式;
(2)过x轴上的点D(a,0)作平行于轴的直线(a﹥1),分别与直线AB和双曲线
交于点P、Q,且PQ=2QD,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知□ABCD的两边AB、BC的长是关于x的一元二次方程方程的两个实数根.
(1)试说明:无论m取何值,原方程总有两个实数根;
(2)当m为何值时,□ABCD是菱形?求出这时菱形的边长;
(3)若AB﹦2,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=6,cosC=,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数
的图象经过点
,直线
与x轴交于点
.
(1)求的值;
(2)过第二象限的点作平行于x轴的直线,交直线
于点C,交函数
的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,函数y=ax2﹣2ax﹣4a(x≥0)的图象记为M1,函数y=﹣ax2﹣2ax+4a(x<0)的图象记为M2,其中a为常数,且a≠0,图象M1,M2合起来得到的图象记为M.
(1)当图象M1的最低点到x轴距离为3时,求a的值.
(2)当a=1时,若点(m,)在图象M上,求m的值,
(3)点P、Q的坐标分别为(﹣5,﹣1),(4,﹣1),连结PQ.直接写出线段PQ与图象M恰有3个交点时a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com