精英家教网 > 初中数学 > 题目详情

【题目】为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).

(1)体育所占的百分比是_______,选择其他的人数是________

(2)在问卷调查中,小丁和小李分别选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中分别抽取一名学生参加活动,用列表或画树状图的方法求小丁和小李恰好都被选中的概率;

(3)如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?

【答案】 40 8人

(2) ;(3)200

【解析】分析:(1)用单位“1”减去美术、音乐、其它所占的百分比即得体育所占的百分比;用喜欢音乐的人数4除以喜欢音乐的人数所占百分比即抽取学生总数然后用所求总数乘以32%即可求喜欢其它的人数;

(2)树状图和列表法均可,列出所有可能发生的情况数,用小丁和小李恰好都被选中的情况数除以总数即可

(3)利用样本估计总体的方法,500×调查的25名学生中最喜欢体育运动的学生所占的百分比即可.

详解:(1)如图,

(2)易知选择音乐类的有4人,选择美术类的有3.记选择音乐类的4人分别是小丁;选择美术类的3人分别是小李.

小丁

小丁

小丁

小李

小李

小李

小李

小丁小李

由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是.

(3)由(1)可知问卷中最喜欢体育运动的的学生占40%,得

(名)

所以该年级中最喜欢体育运动的学生约有200.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,点A、B、P分别在两坐标轴上,∠APB=60°,PB=m,PA=2m,以点P为圆心、PB为半径作⊙P,作∠OBP的平分线分别交⊙P、OPC、D,连接AC.

(1)求证:直线AB⊙P的切线.

(2)设△ACD的面积为S,求S关于m的函数关系式.

(3)如图2,当m=2时,把点C向右平移一个单位得到点T,过O、T两点作⊙Qx轴、y轴于E、F两点,若M、N分别为两弧的中点,作MG⊥EF,NH⊥EF,垂足为G、H,试求MG+NH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD内作EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AHEF,垂足为H.

(1)如图2,将ADF绕点A顺时针旋转90°得到ABG.

①求证:AGE≌△AFE;

②若BE=2,DF=3,求AH的长.

(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD,点P是对角线AC所在直线上的动点,点EDC边所在直线上,且随着点P的运动而运动,PE=PD总成立。

(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PEPB有怎样的关系?(直接写出结论不必证明)

(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;

(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PEPB有怎样的关系?(直接写出结论不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某书店为了迎接读书节制定了活动计划,以下是活动计划书的部分信息:

读书节活动计划书

书本类别

A

B

进价(单位:元)

18

12

备注

1.用不超过16800元购进A,B两类图书共1000本;

2.A类图书不少于600本;

……

(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A,B两类图书的标价;

(2)经市场调查后,陈经理发现他们高估了读书节对图书销售的影响,便调整了销售方案,A类图书每本标价降低a(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):

方案①:所有评委所给分的平均数;

方案②:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数;

方案③:所有评委所给分的中位数;

方案④:所有评委所给分的众数。

为了探究上述方案的合理性,先地某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图。

1)分别按上述4个方案计算这个同学演讲的最后得分;

2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分,并说明你的理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为(  )

A. 2cm B. 4cm C. 2cm22cm D. 4cm44cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某报社为了了解市民获取新闻的最主要途径,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.

组别

获取新闻的最主要途径

人数

A

电脑上网

280

B

手机上网

m

C

电视

140

D

报纸

n

E

其它

80

请根据图表信息解答下列问题:

1)统计表中的m   n   ,并请补全条形统计图;

2)扇形统计图中D所对应的圆心角的度数是   

3)若该市约有120万人,请你估计其中将电脑上网手机上网作为获取新闻的最主要途径的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】食品安全受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两份尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题.

1)接受问卷调查的学生共有_____人,扇形统计图中基本了解部分所对应扇形的圆心角为_____.

2)请补全条形统计图.

3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到了解基本了解程度的总人数.

4)若从对食品安全知识达到了解程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

【答案】16090°;(2)补图见解析;(3300;(4

【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以了解基本了解程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数(4)根据题意列出表格,再根据概率公式即可得出答案.

详解:(16090°.

2)补全的条形统计图如图所示.

3)对食品安全知识达到了解基本了解的学生所占比例为,由样本估计总体,该中学学生中对食品安全知识达到了解基本了解程度的总人数为.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是.

点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.

型】解答
束】
24

【题目】为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800.

1)求该社区的图书借阅总量从2015年至2017年的年平均增长率.

2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人,如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,设2018年的人均借阅量比2017年增长a%,求a的值至少是多少?

查看答案和解析>>

同步练习册答案