精英家教网 > 初中数学 > 题目详情

【题目】如图,直径为 10cm 的⊙O 中,两条弦 AB,CD 分别位于圆心的异侧,ABCD,且,若 AB=8cm,则 CD 的长为_____cm

【答案】

【解析】

OOEABE,交⊙OM,反向延长OECDG,交⊙ON,则AE=AB=4,连接AN,AO,AM,则MN为⊙O的直径,根据平行线的性质得到MNCD,推出AN=CD,根据勾股定理即可得到结论.

OOEABE,交⊙OM,反向延长OECDG,交⊙ON,

AE=AB=4,

连接AN,AO,AM,

MN为⊙O的直径,

ABCD,

MNCD,

AN=CD,

RtAOE中,OE==3,

ME=5-3=2,

RtAEM中,AM==2

MN为⊙O的直径,

∴∠MAN=90°,

AN=

CD=AN=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面4.5m.当水位上涨刚好淹没小孔时,大孔的水面宽度为( )m.

A. 8m B. 9m C. 10 m D. 12 m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的自然数组,如(3,6)为两个数的自然数组,因为(3×6)能被(3+6)整除;又如(15,30,60)为三个数的自然数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…

(1)求证:2nnn﹣2)(n≥3,n为整数)组成的数组是两个数的自然数组;

(2)若(4a,5a,6a)是三个数的自然数组,求满足条件的三位正整数a,并判断(4a+5,5a+5,6a+5)是否为自然数组.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为进一步发展基础教育,自2016年以来,某县加大了教育经费的投入.2016年该县投入教育经费6000万元,2018年投入教育经费8640万元,假设该县这两年投入教育经费的年平均增长率相同.

(1)求这两年该县投入教育经费的年平均增长率;

(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2019年该县教育经费多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线 y=ax2﹣5ax+c x 轴于点 A,点 A 的坐标为(4,0).

(1)用含 a 的代数式表示 c

(2) a时,求 x 为何值时 y 取得最小值,并求出 y 的最小值.

(3) a时,求 0≤x≤6 y 的取值范围.

(4)已知点 B 的坐标为(0,3),当抛物线的顶点落在△AOB 外接圆内部时,直接写出 a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.

(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;

(2)当DP为⊙O的切线时,求线段DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)

(1)画出△ABC关于原点对称的△A'B'C';

(2)将△A'B'C'绕点C'顺时针旋转90°,画出旋转后得到的△ABC″,并直接写出此过程中线段C'A'扫过图形的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AEBE),且EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.

(1)求证:OM=ON.

(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.

查看答案和解析>>

同步练习册答案