【题目】为了响应国家“自主创业”的号召,某大学毕业生开办了一个装饰品商店,采购了一种今年刚上市的饰品进行了30天的试销,购进价格为20元/件,销售结束后,得知日销售量P(件)与销售时间x(天)之间的关系如图(1)所示,销售价格Q(元/件)与销售时间x(天)之间的关系如图(2)所示.
(1)根据图象直接写出:日销售量P(件)与销售时间x(天)之间的函数关系式为 ;销售单价
Q(元/件)与销售时间x(天)的函数关系式为 .(不要求写出自变量的取值范围)
(2)写出该商品的日销售利润W(元)和销售时间x(天)之间的函数关系式;(不要求写出自变量的取值范围)
(3)请问在30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.
【答案】(1)P=﹣2x+80,Q=x+30;(2)W=﹣x2+20x+800;(3)在30天的试销中,第10天的日销售利润最大,最大利润为900元
【解析】试题分析:(1)设P=kx+80,将(30,20)代入可求出k的值,得出日销售量P(件)与销售时间x(天)之间的函数关系式;设Q=mx+30,将(30,45)代入可求出m的值,得出Q(元/件)与销售时间x(天)的函数关系式;
(2)根据销售问题中的基本等量关系:销售利润=日销售量×(一件的销售价-一件的进价),建立函数关系式;
(3)将(2)中函数关系式配方可得其顶点式,结合自变量x的范围,根据二次函数的性质可得函数的最值情况.
试题解析:
解:(1)设P=kx+80,将(30,20)代入,
得20=30k+80,解得k=﹣2,
所以日销售量P(件)与销售时间x(天)之间的函数关系式为P=﹣2x+80;
设Q=mx+30,将(30,45)代入,
得45=30m+30,解得m=,
所以Q(元/件)与销售时间x(天)的函数关系式为Q=x+30.
故答案为P=﹣2x+80,Q=x+30;
(2)根据题意,得W=P(Q﹣20)=(﹣2x+80)[(x+30)﹣20]=﹣x2+20x+800(1≤x≤30,且x为正整数),
即W=﹣x2+20x+800;
(3)∵W=﹣x2+20x+800=﹣(x﹣10)2+900,
∴当x=10时,W取最大值为900.
∴在30天的试销中,第10天的日销售利润最大,最大利润为900元.
科目:初中数学 来源: 题型:
【题目】甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某一数字,否则重转.
(1)请用树状图或列表法列出所有可能的结果;
(2)若指针所指的两个数字都是方程x2-5x+6=0的解时,则甲获胜;若指针所指的两个数字都不是方程x2-5x+6=0的解时,则乙获胜,问他们两人谁获胜的概率大?请分析说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的两个外角∠CBE,∠CDF的平分线交于点G,若∠A=52°,∠DGB=28°,则∠DCB的度数是( )
A. 152°B. 128°C. 108°D. 80°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A点的坐标为(1,0).以OA为边在x轴上方画一个正方形OABC.以原点O为圆心,正方形的对角线OB长为半径画弧,与x轴正半轴交于点D.
(1)点D的坐标是 ;
(2)点P(x,y),其中x,y满足2x-y=-4.
①若点P在第三象限,且△OPD的面积为3,求点P的坐标;
②若点P在第二象限,判断点E(+1,0)是否在线段OD上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应“低碳环保,绿色出行”的公益活动,小燕和妈妈决定周日骑自行车去图书馆借书.她们同时从家出发,小燕先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分钟的速度到达图书馆,而妈妈始终以120米/分钟的速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图像,解答下列问题:
(1)图书馆到小燕家的距离是 米;
(2)a= ,b= ,m= ;
(3)妈妈行驶的路程y(米)关于时间x(分钟)的函数解析式是 ;定义域是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,正比例函数y=的图象经过A,点A的纵坐标为4,反比例函数y=的图象也经过点A,在第一象限内的点B在这个反比例函数图象上,过点B做BC∥x轴,交y轴于点C,且AC=AB,求:
(1)这个反比例函数的解析式;
(2)ΔABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,□ABCD的两个顶点B,D都在抛物线y=x2+bx+c上,且OB=OC,AB=5,tan∠ACB=.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点E,使以A,C,D,E为顶点的四边形是菱形?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)动点P从点A出发向点D运动,同时动点Q从点C出发向点A运动,运动速度都是每秒1个单位长度,当一个点到达终点时另一个点也停止运动,运动时间为t(秒).当t为何值时,△APQ是直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边BC的长为4,面积是12,腰AB的垂直平分线EF分别交AB、AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(4,2)、B(a,4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点;
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com