分析 作OE⊥BC于E,OF⊥AC于F,如图,根据角平分线的性质得到OE=OF=OD=5,然后根据三角形面积公式和S△ABC=S△OAB+S△OBC+S△OAC得到S△ABC=$\frac{5}{2}$(AB+BC+AC),再把△ABC的周长为20代入计算即可.
解答
解:作OE⊥BC于E,OF⊥AC于F,如图,
∵点O是△ABC三条角平分线的交点,
∴OE=OF=OD=5,
∴S△ABC=S△OAB+S△OBC+S△OAC
=$\frac{1}{2}$OD•AB+$\frac{1}{2}$OE•BC+$\frac{1}{2}$OF•AC
=$\frac{5}{2}$(AB+BC+AC)
=$\frac{5}{2}$×20
=50.
故答案为:50.
点评 本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.
科目:初中数学 来源: 题型:选择题
| A. | 3cm | B. | 6cm | C. | 11cm | D. | 14cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | AE=CF | B. | BE=FD | C. | BF=DE | D. | ∠1=∠2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com