精英家教网 > 初中数学 > 题目详情

作业宝如图,△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于D点,E为BC的中点,连接ED并延长交BA延长线于F点.
(1)求证:直线DE是⊙O的切线;
(2)若AB=数学公式,AD=1,求线段AF的长;
(3)当D为EF的中点时,试探究线段AB与BC之间的数量关系.

证明:(1))连接BD,DO,
∵AB是⊙O的直径,
∴∠ADB=90°.
∴∠CDB=90°
又∵E为BC的中点,
∴DE=EB=EC,
∴∠EDB=∠EBD.
∵OD=OB,
∴∠ODB=∠OBD.
∵∠ABC=90°,
∴∠EDB+∠OBD=90°.
即OD⊥DE.
∴DE是⊙O的切线.

(2)设AF=x,则FD==(切割线定理),
在RT△ABD中,BD==2,
∵∠AFD=∠DFB,∠FDA=∠FBD,
∴△AFD∽△DFB,
==,即=
解得:x=,即线段AF的长度为

(3)∵点D为EF中点,
∴BD=FD=DE(斜边中线等于斜边一半),
又∵ED=EB(切线的性质),
∴△EDB为等边三角形,
∴∠DBE=60°,∠BCD=30°,
∴BC=AB;
分析:(1)连接BD,DO,则可得∠ODA=∠OAD,结合直径所对的圆周角为90°,可得∠ADB=90°,从而可证明OD⊥DE,也可得出结论.
(2)设AF=x,则FD==(切割线定理),在RT△ABD中,求出BD,然后判断△AFD∽△DFB,利用相似三角形的性质可得出关于x的方程,解出即可得出答案;
(3)根据切线的性质及直角三角形中斜边中线等于斜边一半可判断出△DEB为等边三角形,然后可得出∠BCD=30°,继而可得出线段AB与BC之间的数量关系.
点评:此题属于圆的综合题,涉及了解直角三角形、切割线定理切线的判定与性质、相似三角形的判定与性质,考察的知识点较多,解答第二问是本题的难点,关键是表示用AF表示出FD,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案