【题目】为响应市教育局倡导的“阳光体育运动”的号召,全校学生积极参与体育运动.为了进一步了解学校九年级学生的身体素质情况,体育老师在九年级800名学生中随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示:
组别 | 次数x | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 | a |
第4组 | 140≤x<160 | 18 |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)表中的a=;
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第组;
(4)若九年级学生一分钟跳绳次数(x)达标要求是:x<120为不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你估算学校九年级同学一分钟跳绳次数为优的人数为 .
【答案】
(1)12
(2)解:由(1)得一分钟跳绳次数在120≤x<140范围中的人数为12,而一分钟跳绳次数在140≤x<160范围中的人数为18人,补全频率直方统计图即可
(3)3
(4)96
【解析】解:(1)由题意得:a=50-(6+8+18+6)=12;(3)∵a=12,
∴6+8+12=26,则这个样本数据的中位数落在第3小组中;(4)由表格得:50人中一分钟跳绳次数在160≤x<180范围中的人数为6人,即优秀的人数为6人,
则样本中优秀人数所占的百分比为 =12%,
则800名学生中优秀的人数为800×12%=96人.
(1)根据总数=各频数之和可求解;(2)根据频数分布表中的信息可补充完整频数分布直方图;(3)根据中位数的定义可求;(4)800名学生中优秀的人数=800百分数。
科目:初中数学 来源: 题型:
【题目】如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A.
(1)求抛物线的解析式;
(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;
(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论: ①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有 . (填正确的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题
甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线AB、CD相交于点O.
(1)OE、OF分别是∠AOC、∠BOD的平分线.画出这个图形.
(2)射线OE、OF在同一条直线上吗?(直接写出结论)
(3)画∠AOD的平分线OG.OE与OG有什么位置关系?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com