精英家教网 > 初中数学 > 题目详情

【题目】如图:在矩形ABCD中,EF经过对角线BD的中点O,并交ADBC于点EF

1)求证:△BOF≌△DOE

2)若AB=4cm,AD=5cm,求四边形ABFE的面积.

【答案】1)见解析;(210

【解析】

1)根据矩形的性质可知,ADBC,结合已知条件,可证得BOF≌△DOEAAS)即可;

2)根据(1)中的结论,可证得ED=FBAE=CF,从而得到,利用条件求出即可.

1)∵四边形ABCD是矩形,

ADBC

∴∠BFO=DEO,∠FBO=EDO

又∵OBD的中点,

OB=OD

∴△BOF≌△DOEAAS);

2)由(1)可得ED=FB

AE=CF

又∵ADBC

AB=4cmAD=5cm

=10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM.已知CD44.5m

(1)求楼间距MN

(2)B号楼共30层,每层高均为3m,则点C位于第几层?(参考数据:tan30°≈0.58sin55.7°≈0.83cos55.7°≈0.56tan55.7°≈1.47)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A. “任意画一个三角形,其内角和为”是随机事件;

B. 某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖;

C. “篮球队员在罚球线上投篮一次,投中”为随机事件;

D. 投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的解题过程,解答后面的问题:

如图,在平面直角坐标系中, 为线段的中点,求点的坐标;

解:分别过轴的平行线,过轴的平行线,两组平行线的交点如图所示,设,则

由图可知:

线段的中点的坐标为

(应用新知)

利用你阅读获得的新知解答下面的问题:

(1)已知,则线段的中点坐标为

(2)平行四边形中,点的坐标分别为,利用中点坐标公式求点的坐标。

(3)如图,点在函数的图象上, 轴上,在函数的图象上 ,以四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段 AB4M AB 的中点,动点 P 到点 M 的距离是 1,连接 PB,线段

PB 绕点 P 逆时针旋转 90°得到线段 PC,连接 AC,则线段 AC 长度的最大值是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,把直线y=x向左平移1个单位可得到一次函数y=x+1的图象,把直线y=kx(k≠0)向左平移1个单位可得到一次函数y=k(x+1)的图象,把抛物线y=ax2(a≠0)向左平移1个单位,可得到二次函数y=a(x+1)2的图象.类似的:我们将函数y=∣x∣向左平移1个单位,在平面直角坐标系中画出了新函数的部分图象,并请回答下列问题:

(1)平移后的函数解析式是__________

(2)借助下列表格,用你认为最简单的方法补画平移后的函数图象:

(3)x 时,yx的增大而增大;当x 时,yx的增大而减小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角EAC为30°,测得建筑物CD的底部D点的俯角EAD为45°.

(1)求两建筑物底部之间水平距离BD的长度;

(2)求建筑物CD的高度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有四部不同的电影,分别记为A、BC、D.

(1)若甲从中随机选择一部观看,则恰好是电影A的概率是

(2)若甲从中随机选择一部观看,乙也从中随机选择一部观看,用列表或画树状图的方法列出所有等可能的结果,并求甲、乙两人恰好选择同一部电影的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(  )

A. (0,0) B. (1, C. D.

查看答案和解析>>

同步练习册答案