【题目】如图,已知AB、AC分别为⊙O的直径和弦,D为的中点,DE垂直于AC的延长线于E,连结BC,若DE=6cm, CE=2cm,下列结论:①. DE是⊙O的切线;②. 直径AB长为20cm;③. 弦AC长为15cm;④. C为的中点.一定正确的个数是( )
A.1B.2C.3D.4
【答案】B
【解析】
连接OD,OC,交BC于点F,可证明DE∥BC,可判断A;在△OCF中,由垂径定理结合勾股定理可求得圆的半径,可判断B;由垂径定理可求得BC的长,结合B可判断C;由弧相等可得弦相等可判断D.
解:连接OD,OC.
∵D是弧BC的中点,
∴OD⊥BC,
∵AB是直径,
∴∠ACB=90°,
∵DE垂直于AC的延长线于E,
∴BC∥DE,
∴OD⊥DE,
∴DE是圆的切线.故①正确;
∵OD⊥BC,DE⊥CE,OD⊥DE,
∴四边形DECF是矩形,
∴DF=CE=2cm,CF=DE=6cm,
∴BC=2CF=12cm,
设半径为rcm,则OF=(r-2)cm,
在Rt△OCF中,
由勾股定理可得OC2=OF2+CF2,
即r2=(r-2)2+62,
解得r=10cm,
∴AB=20cm,
故②正确;
在Rt△ABC中,BC=12cm,AB=20cm,
∴AC= =16(cm),
故③不正确;
若C为弧AD的中点,则AC=CD,
在Rt△CDE中,CE=2cm,DE=6cm,由勾股定理可求得CD=2cm≠AC,
故④不正确;
故选: B.
科目:初中数学 来源: 题型:
【题目】如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.
(1)在旋转过程中,
①当A,D,M三点在同一直线上时,求AM的长.
②当A,D,M三点为同一直角三角形的顶点时,求AM的长.
(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点.
(1)求A、B两点的坐标和反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B,M(m,0)为x轴上一动点,点M在线段OA上运动且不与O,A重合,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
(1)求点B的坐标和抛物线的解析式;
(2)在运动过程中,若点P为线段MN的中点,求m的值;
(3)在运动过程中,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )
A. 30B. 36C. 54D. 72
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)画出△ABC关于原点O成中心对称的△A1B1C1;
(2)写出△A1B1C1的顶点坐标;
(3)求出△A1B1C1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:点A(0,4),B(0,﹣6),C为x轴正半轴上一点,且满足∠ACB=45°,则( )
A.OC=12B.△ABC外接圆的半径等于
C.∠BAC=60°D.△ABC外接圆的圆心在OC上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF交AD于点G.
(1)求证:AD2=ABAE;
(2)若AB=3,AE=2,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com