【题目】如图:点A(0,4),B(0,﹣6),C为x轴正半轴上一点,且满足∠ACB=45°,则( )
A.OC=12B.△ABC外接圆的半径等于
C.∠BAC=60°D.△ABC外接圆的圆心在OC上
【答案】A
【解析】
构造含有90°圆心角的⊙P,则⊙P与x轴的交点即为所求的点C.根据△PBA为等腰直角三角形,可得OF=PE=5,根据勾股定理得:CF=7,进而得出OC.
设线段BA的中点为E,
∵点A(0,4),B(0,6),
∴AB=10,E(0,1).
如图所示,过点E在第四象限作EP⊥BA,且EP=AB=5,则
易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=5;
以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,
∵∠BCA为⊙P的圆周角,
∴∠BCA=∠BPA=45°,即则点C即为所求.
过点P作PF⊥x轴于点F,则OF=PE=5,PF=OE=1,
在Rt△PFC中,PF=1,PC=5,
由勾股定理得:CF==7,
∴OC=OF+CF=5+7=12,
故选:A.
科目:初中数学 来源: 题型:
【题目】已知关于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求证:无论m为何值时,这个方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB、AC分别为⊙O的直径和弦,D为的中点,DE垂直于AC的延长线于E,连结BC,若DE=6cm, CE=2cm,下列结论:①. DE是⊙O的切线;②. 直径AB长为20cm;③. 弦AC长为15cm;④. C为的中点.一定正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应垃圾分类处理,改善生态环境,某小区将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C
(1)小明将垃圾分装在三个袋中,任意投放,用画树状图或列表的方法求把三个袋子都放错位置的概率是多少?
(2)某学习小组为了了解居民生活垃圾分类投放的情况,现随机抽取了某天三类垃圾箱中总共100吨的生活垃圾,数据统计如表(单位:吨):
A | B | C | |
a | 40 | 10 | 10 |
b | 3 | 24 | 3 |
c | 2 | 2 | 6 |
调查发现,在“可回收垃圾”中塑料类垃圾占10%,每回收1吨塑料类垃圾可获得0.7吨二级原料,某城市每天大约产生200吨生活垃圾假设该城市每天处理投放正确的垃圾,每天大概可回收多少吨塑料类垃圾的二级原料?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B90°,AB4,BC2,以AC为边作△ACE,∠ACE90°,AC=CE,延长BC至点D,使CD5,连接DE.求证:△ABC∽△CED.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点(A点在B点左侧),A(﹣1,0),B(3,0),直线l与抛物线交于A,C两点,其中C点的横坐标为2.
(1)求抛物线的函数解析式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A,C,F,G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=(x﹣1)2+k的图象与x轴交于点A(﹣1,0),C两点,与y轴交于点B.
(1)求抛物线解析式及B点坐标;
(2)在抛物线上是否存在点P使S△PAC=S△ABC?若存在,求出P点坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形,若存在,求出Q点坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴的正半轴和y轴的负半轴上,二次函数y=x2+bx+c的图象经过B、C两点.
(1)求该二次函数的解析式;
(2)结合函数的图象直接写出不等式x2+bx+c>0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华从二次函数y=ax2+bx+c的图象(如图)中观察得到了下面五条信息:
①abc>0 ②2a﹣3b=0 ③b2﹣4ac>0 ④a+b+c>0 ⑤4b<c
则其中结论正确的个数是( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com