【题目】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与轴相交于点A,与轴相交于点B。
(1)点P在运动时,线段AB的长度页在发生变化,请写出线段AB长度的最小值,并说明理由;
(2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由。
【答案】(1)线段AB长度的最小值为4
理由如下:
连接OP因为AB切⊙O于P,所以OP⊥AB
取AB的中点C,则…………3分
当时,OC最短,
即AB最短,此时…………4分
(2)设存在符合条件的点Q,
如图①,
设四边形APOQ为平行四边形,
因为四边形APOQ为矩形
又因为
所以四边形APOQ为正方形
所以,
在Rt△OQA中,根据,
得Q点坐标为()。 …………7分
如图②,设四边形APQO为平行四边形
因为OQ∥PA,,
所以,
又因为
所以,
因为 PQ∥OA,
所以轴。
设轴于点H,
在Rt△OHQ中,根据,
得Q点坐标为()
所以符合条件的点Q的坐标为()或()。
【解析】
(1)如图,设AB的中点为C,连接OP,由于AB是圆的切线,故△OPC是直角三角形,有OP<OC,所以当OC与OP重合时,OC最短;
(2)分两种情况:如图(1),当四边形APOQ是正方形时,△OPA,△OAQ都是等腰直角三角形,可求得点Q的坐标为(,﹣),如图(2),可求得∠QOP=∠OPA=90°,由于OP=OQ,故△OPQ是等腰直角三角形,可求得点Q的坐标为(﹣,).
科目:初中数学 来源: 题型:
【题目】如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
(1)试判断CD与圆O的位置关系,并说明理由;
(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.
(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.
(1)求证:AE=CF;
(2)连结DB交EF于点O,延长OB至点G,使OG=OD,连结EG、FG,判断四边形DEGF是否是菱形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分)
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处.
(1) 说明本次台风会影响B市;
(2)求这次台风影响B市的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,连结BD.
(1)求证:△ABC≌△EBF;
(2)试判断BD与⊙O的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是弧AB上任意一点,过点C作⊙O的切线分别交PA,PB于点D,E.若△PDE的周长为12,则PA的长为( )
A. 12 B. 6 C. 8 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.
(1)求甲、乙两种车辆单独完成任务分别需要多少天?
(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com