精英家教网 > 初中数学 > 题目详情

【题目】2016双十一期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.

(1)求甲、乙两种车辆单独完成任务分别需要多少天?

(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.

【答案】(1)甲、乙两车单独完成任务分别需要15天,30天;(2)见解析.

【解析】

(1)根据题意可以得到相应的分式方程,从而可以解答本题;(2)根据题意和第(1)问中的结果可以分别求得三种方式的费用,从而可以解答本题.

(1)设甲车单独完成任务需要x天,则乙车单独完成任务需要2x天,
)×10=1
解得,x=15
∴2x=30
即甲、乙两车单独完成任务分别需要15天,30天;
(2)设甲车的租金每天a元,则乙车的租金每天(a-1500)元,
[a+(a-1500)]×10=65000
解得,a=4000
∴a-1500=2500
当单独租甲车时,租金为:15×4000=60000,
当单独租乙车时,租金为:30×2500=75000,
∵60000<65000<75000,
单独租甲车租金最少.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工厂沿路护栏的纹饰部分是由若干个和菱形ABCD(如图①)全等的图案组成的,每增加一个菱形,纹饰长度就增加dcm(如图②).已知菱形ABCD的边长为6cm,∠BAD=60°.

(1)求AC的长;

(2)若d=15cm,纹饰总长度L为3918cm,则需要多少个这样的菱形图案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(﹣2015)0+|1﹣ |﹣2cos45°+ +(﹣ ﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)

(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.

1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含ab的代数式表示S1S2

2)请写出上述过程所揭示的乘法公式;

3试利用这个公式计算:(2+1)(22+1)(24+1)(28+1+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上点AC对应的数分别为ac,且ac,满足|a+4|+(c12018=0,点O对应的数为0,点B对应的数为﹣3

1)求数ac的值;

2)点AB沿数轴同时出发向右匀速运动,点A速度为2个单位长度/秒,点B速度为1个单位长度/秒,几秒后,点A追上点B

3)在(2)的条件下,若运动时间为t秒,运动过程中,当AB两点到原点O的距离相等时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC,AB=AC,BAC=90°,1=2,CEBDBD的延长线于点E.求证:BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个全等的△ABC和△DEF重叠在一起,固定△ABC,将△DEF进行如下变换:
(1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系;

(2)如图2,当点F平移到线段BC的中点时,四边形AFBD是什么特殊四边形?请给出证明;

(3)当点F平移到线段BC的中点时,若四边形AFBD为正方形,猜想△ABC应满足什么条件?请直接写出结论:在此条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请在图3位置画出图形,并求出sin∠CGF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画出函数y=2x+4的图像,并结合图像解决下列问题:

(1)写出方程2x+4=0的解;

(2)当﹣4≤y时,求相应x的取值范围.

查看答案和解析>>

同步练习册答案