精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,当mn满足mnkk为常数,且m0n0)时,就称点(mn)为等积点.若直线y=﹣x+bb0)与x轴、y轴分别交于点A和点B,并且该直线上有且只有一个等积点,过点Ay轴平行的直线和过点Bx轴平行的直线交于点C,点E是直线AC上的等积点,点F是直线BC上的等积点,若△OEF的面积为,则OE=______

【答案】

【解析】

由题意等积点在反比例函数的图象上,直线yxbb0)与x轴、y轴分别交于点A和点B,并且直线有且只有一个等积点,可得B0),A0),E),F),等积点”M的坐标为(),根据OEF的面积=S正方形AOBC2SAOESEFC,列方程求出k即可解决问题.

解:如图,由题意,等积点在反比例函数的图象上,

∵直线yxbb0)与x轴、y轴分别交于点A和点B,并且直线上有且只有一个等积点

∴方程有两个相等的实数根,

,即

B0),A0),E),F),等积点”M的坐标为(),

∵△OEF的面积=S正方形AOBC2SAOESEFC

解得:k2(舍弃),

E),

OE

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y= 与一次函数y=x+b的图形在第一象限相交于点A1k+4).

1)试确定这两函数的表达式;

2)求出这两个函数图象的另一个交点B的坐标,并求AOB的面积;

3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,上一点,是半径上一动点(不与重合),过点作射线,分别交弦两点,过点的切线交射线于点

1)求证:

2)当的中点时,

①若,判断以为顶点的四边形是什么特殊四边形,并说明理由;

②若,且,则_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC为对角线,点EF分别在ABAD上,BE=DF,连接EF

1)求证:AC⊥EF

2)延长EFCD的延长线于点G,连接BDAC于点O,若BD=4tanG=,求AO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于给定的,我们给出如下定义:若点M是边上的一个定点,且以M为圆心的半圆上的所有点都在的内部或边上,则称这样的半圆为边上的点M关于的内半圆,并将半径最大的内半圆称为点M关于的最大内半圆.若点M是边上的一个动点(M不与BC重合),则在所有的点M关于的最大内半圆中,将半径最大的内半圆称为关于的内半圆.

1)在中,

①如图1,点D在边上,且,直接写出点D关于的最大内半圆的半径长;

②如图2,画出关于的内半圆,并直接写出它的半径长;

2)在平面直角坐标系中,点E的坐标为,点P在直线上运动(P不与O重合),将关于的内半圆半径记为R,当时,求点P的横坐标t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?

(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75≈1.41≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品经销店欲购进A、B两种纪念品,用320元购进的A种纪念品与用400元购进的B种纪念品的数量相同,每件B种纪念品的进价比A种纪念品的进价贵10元.

(1)A、B两种纪念品每件的进价分别为多少?

(2)若该商店A种纪念品每件售价45元,B种纪念品每件售价60元,这两种纪念品共购进200件,这两种纪念品全部售出后总获利不低于1600元,求A种纪念品最多购进多少件.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P在函数yx0)的图象上从左向右运动,PAy轴,交函数y=﹣x0)的图象于点AABx轴交PO的延长线于点B,则△PAB的面积(  )

A.逐渐变大B.逐渐变小C.等于定值16D.等于定值24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在黄金矩形ABCD中,四边形ABFGGHED均为正方形,,现将矩形ABCD沿AE向上翻折,得四边形AEC'B',连接BB',若AB2,则线段BB'的长度为(  )

A.B.C.2D.

查看答案和解析>>

同步练习册答案