精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为(
A.
B.2
C.
D.10﹣5

【答案】B
【解析】解:如图,延长BG交CH于点E,
在△ABG和△CDH中,

∴△ABG≌△CDH(SSS),
AG2+BG2=AB2
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,

∴△ABG≌△BCE(ASA),
∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,
∴GE=BE﹣BG=8﹣6=2,
同理可得HE=2,
在RT△GHE中,GH= = =2
故选:B.
【考点精析】本题主要考查了勾股定理的概念的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°ABAC,点DBC的中点,直角∠MDN绕点D旋转,DMDN分别与边ABAC交于EF两点,下列结论:①△DEF是等腰直角三角形;②AECF③△BDE≌△ADFBECFEF,其中正确结论是( )

A. ①②④ B. ②③④

C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点D为射线CB上一个动点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,过点EEF∥BC,交直线AC于点F,连接CE.

(1)如图①,若∠BAC=60°,按边分类:△CEF ____________ 三角形;

(2)若∠BAC<60°.

①如图②,当点D在线段CB上移动时,判断△CEF的形状并证明;

②当点D在线段CB的延长线上移动时,△CEF是什么三角形?请在图③中画出相应的图形,写出结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中有点B﹣10)和y轴上一动点A0a),其中a0,以A点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(cd).

1)当a=2时,则C点的坐标为      );

2)动点A在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.

3)当a=2时,在坐标平面内是否存在一点P(不与点C重合),使△PAB与△ABC全等?若存在,直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了落实中央的强基惠民工程计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成若乙队单独施工则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15那么余下的工程由甲队单独完成还需5

1)这项工程的规定时间是多少天?

2)已知甲队每天的施工费用为6500乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究及应用.

(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);

(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);

(3)比较图1、图2阴影部分的面积,可以得到公式

(4)运用你所得到的公式,计算下列各题:

①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1:y=kx﹣4的图象与直线l2:y=x+1的图象平行.

(1)求直线l1的图象与x轴,y轴所围成图形的面积;

(2)求原点到直线l1的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图,以等腰直角ABC 的直角边 AC 作等边ACD,CEAD E, BD、CE 交于点 F.

(1)求∠DFE 的度数;

(2)求证:AB=2DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本例题

已知:如图,AD的角平分线,,垂足分别为EF.求证:AD垂直平分EF

小明做法

证明:因为AD的角平分线,,所以

理由是:“角平分线上的点到这个角的两边的距离相等”.

因为

所以AD垂直平分EF

理由是:“到线段两个端点距离相等的点在这条线段的垂直平分线上”.

老师观点

老师说:小明的做法是错误的

请你解决

指出小明做法的错误;

正确、完整的解决这道题.

查看答案和解析>>

同步练习册答案