精英家教网 > 初中数学 > 题目详情

【题目】已知直线l1:y=kx﹣4的图象与直线l2:y=x+1的图象平行.

(1)求直线l1的图象与x轴,y轴所围成图形的面积;

(2)求原点到直线l1的距离.

【答案】(1)6;(2)

【解析】

(1)根据平行得出k=,求出与想、y轴的交点坐标,即可求出面积;
(2)根据垂直求出a的值,求出组成的方程组的解,即可求出答案.

解:(1)∵直线l1:y=kx﹣4的图象与直线l2:y=x+1的图象平行,

k=

即直线l1:y=x﹣4,

x=0时,y=﹣4,

y=0时,x=3,

所以直线l1的图象与x轴,y轴所围成图形的面积是=6;

(2)设过原点且垂直于直线l1的直线的解析式为y=ax,

a=﹣1,

解得:a=﹣

y=﹣x,

解方程组 得:

=

即原点到直线l1的距离是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABCDx轴,BCDEy轴,且AB=CD=4 cm,OA=5 cm,DE=2 cm,动点P从点A出发,以每秒1 cm的速度,沿ABC路线向点C运动;动点Q从点O出发,以每秒2 cm的速度,沿OED路线向点D运动.若P,Q两点同时出发,其中一点到达终点时,运动停止.

(1)直接写出B,C,D三个点的坐标;

(2)P,Q两点出发3 s时,求三角形PQC的面积;

(3)设两点运动的时间为t s,用含t的式子表示运动过程中三角形OPQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对任意有理数x、y定义运算如下:xy=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,12=3,23=4,并且有一个不为零的数d使得对任意有理数xd=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为(
A.
B.2
C.
D.10﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC

(1)求点A、C的坐标;

(2)将ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);

(3)在坐标平面内,是否存在点P(除点B外),使得APC与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABC在一条直线上,△ABD△BCE均为等边三角形,连接AECDAE分别交CDBD于点MPCDBE于点Q,连接PQBM,下面结论:

①△ABE≌△DBC②∠DMA=60°③△BPQ为等边三角形;④MB平分∠AMC

其中结论正确的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠C=90°,AC=BC,点C在第一象限内.若A(5,0),B (-2,4),C(m,n),则(m+n)(m-n)的值是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市计划经销一些特产,经销前,围绕“A:王高虎头鸡,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鸭蛋”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.
(1)请补全扇形统计图和条形统计图;
(2)若全市有110万市民,估计全市最喜欢“羊口咸蟹子”的市民约有多少万人?
(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到A的概率是多少?写出分析计算过程.

查看答案和解析>>

同步练习册答案