精英家教网 > 初中数学 > 题目详情

【题目】右图中曲线是反比例函数 的图象的一支.

(1)这个反比例函数图象的另一支位于哪个象限?常数n的取值范围是什么?
(2)若一次函数 的图象与反比例函数的图象交于点A,与x轴交于点B,△AOB的面积为2,求n的值.

【答案】
(1)

解:这个反比例函数图象的另一支位于第四象限.

由n+7<0,

解得n<﹣7,

即常数n的取值范围是n<﹣7


(2)

解:在 中令y=0,得x=2,

即OB=2.

过A作x轴的垂线,垂足为C,如图.

∵SAOB=2,即 OBAC=2,

×2×AC=2,解得AC=2,即A点的纵坐标为2.

把y=2代入 中,得x=﹣1,即A(﹣1,2).

所以

解得n=﹣9


【解析】(1)根据反比例函数的性质可求得反比例函数的图象分布在第二、第四象限,所以n+7<0即可求解;(2)图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S= |k|,可利用△AOB的面积求出n值.
【考点精析】关于本题考查的反比例函数的图象和反比例函数的性质,需要了解反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点;性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图直线MNABCD的顶点DABC三点分别作MN的垂线垂足分别是EFG

求证DEFG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式,属于二元一次方程的个数有( )

xy+2xy=74x+1=xy+y=5x=yx2y2=2

⑥6x2y ⑦x+y+z=1 ⑧yy1=2y2y2+x

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鲁班家装公司为芙蓉小区做家装设计,调查员设计了如下问卷,对家装风格进行专项调查.
通过随机抽样调查50家客户,得到如下数据:
A B B A B B A C A C A B A D A A B
B A A D B A B A C A C B A A D A A
A B B D A A A B A C A B D A B A
(1)请你补全下面的数据统计表: 家装风格统计表

装修风格

划记

户数

百分比

A中式

正正正正正

25

50%

B欧式

C韩式

5

10%

D其他

10%

合计

50

100%


(2)请用扇形统计图描述(1)表中的统计数据;(注:请标明各部分的圆心角度数)
(3)如果公司准备招聘10名装修设计师,你认为各种装修风格的设计师应分别招多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“2016国际大数据产业博览会525日至529日在贵阳举行.参展内容为:A﹣经济和社会发展;B﹣产业与应用;C﹣技术与趋势;D﹣安全和隐私保护;E﹣电子商务,共五大板块,为了解观众对五大板块的关注情况,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:

1)本次随机调查了多少名观众?

2)请补全统计图,并求出扇形统计图中“D﹣安全和隐私保护所对应的扇形圆心角的度数.

3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“E﹣电子商务的人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.
(1)请用a表示第三条边长;
(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;
(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣2x+m﹣1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.

(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;

(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)(1)阅读理解:

如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是_________;

(2)问题解决:

如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不是正数的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案