精英家教网 > 初中数学 > 题目详情
19.在各个内角都相等的多边形中,一个内角是一个外角的4倍,则这个多边形是几边形?

分析 首先设多边形的边数为n,根据多边形内角和公式180°(n-2)和多边形外角和为360°,可得方程180(n-2)=360×4,解方程即可得边数.

解答 解:设这个多边形是n边形,则
180(n-2)=360×4,
解得:n=10.
答:这个多边形是10边形.

点评 此题主要考查了多边形的内角和外角,关键是掌握多边形内角和公式180°(n-2),多边形外角和为360°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.二元一次方程x+y=1的非负整数解是$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,直线 l1∥l2,∠α=∠β,∠1=50°,则∠2的度数为(  )
A.130°B.120°C.115°D.100°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知y=-$\frac{1}{2}$x2+2x+6
(1)把它配方成y=a(x-h)2+k形式,写出它的开口方向、顶点M的坐标;
(2)作出函数图象;(填表描出五个关键点)
(3)结合图象回答:当y>0时,直接写出x的取值范围.
x-20246
y06860

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.
(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=72度;
(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;
(3)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数(如有需要,可在答题卡相应位置另外画图).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,直线y=-$\frac{1}{2}$x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(-1,0).
(1)求该二次函数的关系式;
(2)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某市从今年1月1日起调整居民用水价格,每吨水费上涨三分之一,小丽家去年12月的水费是15元,今年2月的水费是30元.已知今年2月的用水量比去年12月的用水量多5吨,求该市今年居民用水的价格?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)先化简,后求值:(2a-3b)(3b+2a)-(a-2b)2,其中:a=-2,b=3
(2)已知:a-b=$\frac{1}{5}$,a2+b2=2$\frac{1}{25}$.求(ab)2005
(3)求(2+1)(22+1)(24+1)…(232+1)+1的个位数字.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在△ABC中,AB=AC,∠BAC=90°,点E在AC边上,BE平分∠ABC,CD⊥BE于点D,连接AD,若BE=10,则AD的长是5.

查看答案和解析>>

同步练习册答案