【题目】如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是( )
A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2
【答案】C
【解析】
设正方形的边长为2a,易证四边形AFCE是平行四边形,所以四边形EHFG是矩形,由∠AEG=∠BCE得到等式,从而可用x表示出EG,接着用x表示EH,从而可求出y与x之间的关系式.
解:设正方形的边长为2a,
∴BC=2a,BE=a,
∵E、F分别是AB、CD的中点,
∴AE=CF,
∵AE∥CF,
∴四边形AFCE是平行四边形,
∴AF∥CE,
∵EG⊥AF,FH⊥CE,
∴四边形EHFG是矩形,
∵∠AEG+∠BEC=∠BCE+∠BEC=90°,
∴∠AEG=∠BCE,
∴tan∠AEG=tan∠BCE,
∴,
∴EG=2x,
∴由勾股定理可知:AE=x,
∴AB=BC=x,
∴CE=5x,
易证:△AEG≌△CFH,
∴AG=CH,
∴EH=EC-CH=4x,
∴y=EGEC=8x2,
故选C.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,D,E分别是AB,AC边的中点,将△ABC绕点B顺时针旋转60°到△A′BC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1
(1)若k=2,则AO的长为 ,△BOD的面积为 ;
(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是反比例y=(x>0)的图象上的一个动点,连接OA,OB⊥OA,且OB=2OA,那么经过点B的反比例函数图象的表达式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出下列结论:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线C1:y=ax2﹣4ax﹣5(a>0).
(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;
(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;
②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;
(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F(AB>AE).问:△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴负半轴于点E,反比例函数y=﹣(x<0)的图象过点A,则△BEC的面积是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com