精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,EF分别是ABCD的中点,EGAFFHCE,垂足分别为GH,设AG=x,图中阴影部分面积为y,则yx之间的函数关系式是(  )

A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2

【答案】C

【解析】

设正方形的边长为2a,易证四边形AFCE是平行四边形,所以四边形EHFG是矩形,由∠AEG=∠BCE得到等式,从而可用x表示出EG,接着用x表示EH,从而可求出yx之间的关系式.

解:设正方形的边长为2a
BC=2aBEa
EF分别是ABCD的中点,
AECF
AECF
∴四边形AFCE是平行四边形,
AFCE
EGAFFHCE
∴四边形EHFG是矩形,
∵∠AEG+∠BEC=∠BCE+∠BEC=90°
∴∠AEG=∠BCE
tanAEGtanBCE

EG=2x
∴由勾股定理可知:AEx
ABBCx
CE=5x
易证:AEG≌△CFH
AGCH
EHECCH=4x
yEGEC=8x2
故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB90°,∠A30°,BC6DE分别是ABAC边的中点,将△ABC绕点B顺时针旋转60°到△ABC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB两点在反比例函数yx0)的图象上,其中k0ACy轴于点CBDx轴于点D,且AC1

1)若k2,则AO的长为   ,△BOD的面积为   

2)若点B的横坐标为k,且k1,当AOAB时,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是反比例y(x0)的图象上的一个动点,连接OAOBOA,且OB2OA,那么经过点B的反比例函数图象的表达式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将DCE沿DE对折至DFE,延长EF交边AB于点G,连接DGBF,给出下列结论:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④SBEF=.其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线C1:y=ax2﹣4ax﹣5(a0).

(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;

(2)试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;

将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;

(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,EAD的中点,EFECABFABAE.问:AEFEFC是否相似?若相似,证明你的结论;若不相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC的直角边BCx轴负半轴上,斜边AC上的中线BD的反向延长线交y轴负半轴于点E,反比例函数y=﹣x0)的图象过点A,则BEC的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求函数的最值.

查看答案和解析>>

同步练习册答案