精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,矩形如图放置,动点出发,沿所示方向运动,每当碰到矩形的边时反弹,每次反弹的路径与原路径成度角(反弹后仍在矩形内作直线运动),当点次碰到矩形的边时,的坐标为;当点次碰到矩形的边时,的坐标为 __________

【答案】83

【解析】

根据反弹的方式作出图形,可知每6次碰到矩形的边为一个循环组依次循环,用2019除以6,根据商和余数的情况确定所对应的点的坐标即可.

解:如图,当点P2次碰到矩形的边时,点P的坐标为:(74);
当点P6次碰到矩形的边时,点P的坐标为(03),
经过6次碰到矩形的边后动点回到出发点,
2019÷6=336…3
∴当点P2019次碰到矩形的边时为第337个循环组的第3次碰到矩形的边,
∴点P的坐标为(83).
故答案为:(83).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,C是O外一点,AB=AC,连接BC,交O于点D,过点D作DEAC,垂足为E.

(1)求证:DE与O相切.

(2)B=30°,AB=4,则图中阴影部分的面积是   (结果保留根号和π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:

①2a+b=0;

当﹣1≤x≤3时,y<0;

若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2

④9a+3b+c=0

其中正确的是(  )

A. ①②④ B. ①②③ C. ①④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=BC,BEAC于点E,ADBC于点D,BAD=45°,AD与BE交于点F,连接CF.

(1)求证:BF=2AE;

(2)若CD=,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,弦BDAOE,连接BC,过点OOFBCF,若BD=8cm,AE=2cm,则OF的长度是(  )

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为正六边形ABCDEF的中心,点MAF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点NBC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4BC=3.将BC边在直线l上滑动,使AB在函数的图象上.那么k的值是

A 3 B.6 C.12 D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题:①所有锐角三角函数值都为正数;②解直角三角形时只需已知除直角外的两个元素;③RtABC中,B=90°,则sin2A+cos2A=1;④RtABC中,A=90°,则tanCsinC=cosC.其中正确的命题有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=2,C=D,求证:∠A=F.

查看答案和解析>>

同步练习册答案