精英家教网 > 初中数学 > 题目详情

【题目】如图AB⊙O的直径,PA⊙O相切于点ABP⊙O相交于点DC⊙O上的一点,分别连接CBCD,∠BCD60°.

(1)求∠ABD的度数;

(2)AB6,求PD的长度.

【答案】(1)∠ABD=30°;(2)PD=

【解析】

(1)根据圆周角定理得:∠ADB=90°,由同弧所对的圆周角相等和直角三角形的性质可得结论;

(2)如图1,根据切线的性质可得∠BAP=90°,根据直角三角形30°角的性质可计算AD的长,由勾股定理计算DB的长,由三角函数可得PB的长,从而得PD的长.

(1)如图,连接AD.

BA是⊙O直径,

∴∠BDA=90°.

∴∠BAD=C=60°.

∴∠ABD=90°-BAD=90°-60°=30°.

(2)如图,∵AP是⊙O的切线,

∴∠BAP=90°.

RtBAD中,∵∠ABD=30°,

DA=BA=×6=3.

BD=DA=3

RtBAP中,∵cosABD=

cos30°=

BP=4

PD=BP-BD=4-3=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】由我国完全自主设计、自主建造的首艘国产航母于20185月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为2的圆O与含30°角的直角三角板ABCAB边切于点A,将直角三角板沿BA边所在的直线向右平移,当平移到AC与圆O相切时,该直角三角板的平移距离为(

A. B. C. 1D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在同一直线噵路上同起点,同方向同进出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到达终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点______________米。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD边长为4,点O在对角线DB上运动(不与点BD重合),连接OA,作OPOA,交直线BC于点P

1)判断线段OAOP的数量关系,并说明理由.

2)当OD时,求CP的长.

3)设线段DOOPPCCD围成的图形面积为S1,△AOD的面积为S2,求S1S2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们常见的汽车玻璃升降器如图①所示,图②和图③是升降器的示意图,其原理可以看作是主臂PB绕固定的点O旋转,当端点P在固定的扇形齿轮上运动时,通过叉臂式结构(点B可在MN上滑动)的玻璃支架MN带动玻璃沿导轨作上下运动而达到玻璃升降目的.点O和点PAB在同一直线上.当点P与点E重合时,窗户完全闭合(图②),此时∠ABC30°;当点P与点F重合时,窗户完全打开(图③).已知的半径OP5cmcmOAABAC20cm

1)当窗户完全闭合时,OC_____cm

2)当窗户完全打开时,PC_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CBCA,∠ACB90°,点D在边BC上(与BC不重合),四边形ADEF为正方形,过点FFGCA,交CA的延长线于点G,连接FB,交DE于点Q,得出以下结论:①ACFG;②SFABS四边形CBFG12;③∠ABC=∠ABF;④AD2FQAC.其中正确结论的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,DBC边上的一点,EAD的中点,过A点作BC的平行线交CE的延长线于点F,且AFBD,连接BF

1)求证:BDCD

2)不在原图添加字母和线段,对ABC只加一个条件使得四边形AFBD是菱形,写出添加条件并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,以AB为直径的⊙O分别与BCAC相交于点DEBDCD,过点D作⊙O的切线交边AC于点F

1)求证:DFAC

2)若⊙O的半径为2CF1,求的长(结果保留π).

查看答案和解析>>

同步练习册答案