精英家教网 > 初中数学 > 题目详情

【题目】某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).

①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;

②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.

根据以上测量过程及测量数据,请你求出河宽BD是多少米?

【答案】河宽BD13.6米.

【解析】解:由题意得∠BAD∠BCE

∵∠ABD∠CBE90°

∴△BAD∽△BCE

解得BD13.6米.

答:河宽BD13.6米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+b (k0) 的图像与反比例函数y=-的图像交于A-2m)和B (n-2) 两点,求:(1)一次函数的解析式;

2)△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止. 直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边DEF,设DEF与MBC重叠部分的面积为Scm2,直线l的运动时间为t

1求边BC的长度;

2求S与t的函数关系式;

3在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由

4在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABC1D1的边长为1,延长C1D1A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推,若A1C1=2,且点AD2D3D10都在同一直线上,则正方形A9C9C10D10的边长是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).

(1)以原点O为位似中心,相似比为12,在y轴的左侧,画出ABC放大后的图形A1B1C1,并直接写出C1点的坐标;

(2)若点D(a,b)在线段AB上,请直接写出经过(1)的变化后点D的对应点D1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.

(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1__ __S2+S3;(填“>”“=”或“<”)

(2)写出图中的三对相似三角形,并选择其中一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.

(1)连接CQ,证明:CQ=AP;

(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;

(3)猜想PF与EQ的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

1个等式:

2个等式:

3等式:

4个等式:

请解答下列问题:

(1)按以上规律写出第5个等式:a5=   =   

(2)用含n的式子表示第n个等式:an=   =   (n为正整数).

(3)求a1+a2+a3+a4+…+a2018的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE90°,ADAE

1)如果ABAC,∠BAC90°.①当点D在线段BC上时,如图1,线段CEBD的位置关系为___________,数量关系为___________

②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.

2)如图3,如果ABAC,∠BAC90°,点D在线段BC上运动。探究:当∠ACB多少度时,CEBC?请说明理由.

查看答案和解析>>

同步练习册答案