精英家教网 > 初中数学 > 题目详情
5.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,FC,下列结论:
①∠BAG=30°
②△GFC是等腰三角形
③AG∥CF
④S△FGC=3,其中正确结论是②③.

分析 根据翻转变换的性质、等腰三角形的判定定理、正方形的性质进行判断即可.

解答 解:∵AB=6,CD=3DE,
∴DE=2,CE=4,
由折叠的性质可知,AB=AD=AF,AG=AG,∠B=∠AFG=90°,
在Rt△ABG和Rt△AFG中,
$\left\{\begin{array}{l}{AB=AF}\\{AG=AG}\end{array}\right.$,
∴Rt△ABG≌Rt△AFG,
∴BG=FG,
设BG=FG=x,则CG=6-x.
在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2
解得x=3.
∴BG=3,
∵AB=6,
∴AG=3$\sqrt{5}$,
∴∠BAG≠30°,①错误;
∵BG=GF,GF=GC,
∴GF=GC,即△GFC是等腰三角形,②正确;
∵GF=GC,
∴∠GFC=∠GCF,又∠AGB=∠AGF,
∴∠AGB=∠GCF,
∴AG∥CF,③正确;
∵S△GCE=$\frac{1}{2}$GC•CE=$\frac{1}{2}$×3×4=6
∵GF=3,EF=2,△GFC和△FCE等高,
∴S△GFC:S△FCE=3:2,
∴S△GFC=$\frac{3}{5}$×6=$\frac{18}{5}$≠3.④错误.
故答案为:②③.

点评 本题考查的是翻转变换的性质、全等三角形的判定和性质、等腰三角形的判定,掌握相关的判定定理和性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.已知$\frac{x-b}{a}$=2-$\frac{x-a}{b}$,且a+b=2,请化简并求值以下代数式:$\frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}$+$\frac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=43°,则∠P的度数为94度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.用图象法解不等式:2x+1>-$\frac{1}{2}$x+6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:
探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是$\sqrt{3}$+1;如图2,当a=60°时,半圆O与射线AB相切;
(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.
(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=$\frac{R-m}{R}$(用含有R、m的代数式表示)
拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是90°<α≤120°,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD+BC=AB,以AB为直径作⊙O,求证:CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一辆汽车开往距离出发地180km的目的地,出发后第一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,结果比原计划提前40min到达目的地.原计划的行驶速度是60km/h.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,抛物线y=-x2+bx+c(a≠0)与x轴、y轴分别交于点A(3,0)、B(0,3)两点.
(1)试求抛物线的解析式和直线AB的解析式;
(2)动点E从O点沿OA方向以1个单位/秒的速度向终点A匀速运动,同时动点F沿AB方向以$\sqrt{2}$个单位/秒的速度向终点B匀速运动,E、F任意一点到达终点时另一个点停止运动,连接EF,设运动时间为t,当t为何值时△AEF为直角三角形?
(3)抛物线位于第一象限的图象上是否存在一点P,使△PAB面积最大?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.函数y=-x+1、y=$\frac{3}{x}$、y=x2+x-2,y随x的增大而减小的有(  )个.
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案