【题目】如图1,在△ABC中,∠ABC=90°,AO是△ABC的角平分线,以O为圆心,OB为半径作圆交BC于点D,
(1)求证:直线AC是⊙O的切线;
(2)在图2中,设AC与⊙O相切于点E,连结BE,如果AB=4,tan∠CBE=.
①求BE的长;②求EC的长.
【答案】(1)见解析;(2)①;②.
【解析】
(1)作作OE⊥AC,由AO是∠BAC的角平分线,得到∠BAO=∠EAO,判断出△ABO≌△AEO(AAS),得到OE=OB,所以直线AC是⊙O的切线;
(2)先利用AE与⊙O相切于点E, AB=AE=4,再用三角函数求出OB,BC,然后用三角形相似,得到BC=2CE, ,用勾股定理求出CD,最后用切割线定理即可
证明:(1)如图1,
作OE⊥AC, ∴∠OEA=90°,
∵∠ABC=90,∴∠OEA=∠ABC,
∵AO是△ABC的角平分线,∴∠BAO=∠EAO,
在△ABO和△AEO中, ,
∴△ABO≌△AEO(AAS),∴OE=OB,
∵OB是⊙O的半径,∴OE是⊙O的半径, ∴直线AC是⊙O的切线;
(2)①如图2,∵∠ABO=90°,
∴AB切⊙O于B,
∵AE与⊙O相切于点E, ∴AB=AE=4,
∵AO是△ABC的角平分线, ∴AO⊥BE, ∴∠BAO+∠ABE=90°,
∵∠CBE+∠ABE=90°, ∴∠BAO=∠CBE,
∵tan∠CBE= , ∴tan∠BAO= ,
在Rt△ABO中,AB=4,tan∠BAO= , ∴ , ∴BD=2OB=4,
∵AB是⊙O的直径, ∴∠BED=90°,
又∵tan∠CBE= = , ∴BE=2DE,
在Rt△BDE中, ∵BE2+DE2=BD2, ∴ , 解得 ;
②∵AC是⊙O的切线, ∴∠CED=∠CBE,
∵∠DCE=∠ECB,∴△CDE∽△CEB, ∴ ,
又∵tan∠CBE= = , ∴BC=2CE, ,
∵BD=BC﹣CD ∴ , 解得 .
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读理解
利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.
为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为_____;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为_____,综上可得∠BPC的度数为_____;
(2)类比迁移
如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC的度数;
(3)拓展应用
如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.
(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是 ;
(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)尝试探究
如图1,等腰Rt△ABC的两个顶点B,C在直线MN上,点D是直线MN上一个动点(点D在点C的右边),BC=3,BD=m,在△ABC同侧作等腰Rt△ADE,∠ABC=∠ADE=90°,EF⊥ MN于点F,连结CE.
①求DF的长;
②在判断AC⊥CE是否成立时,小明同学发现可以由以下两种思路解决此问题:
思路一:先证CF=EF,求出∠ECF=45°,从而证得结论成立.
思路二:先求DF,EF的长,再求CF的长,然后证AC2+CE2=AE2,从而证得结论成立.
请你任选一种思路,完整地书写本小题的证明过程.(如用两种方法作答,则以第一种方法评分)
(2)拓展探究
将(1)中的两个等腰直角三角形都改为有一个角为的直角三角形,如图2, ∠ABC=∠ADE=90°,∠BAC=∠DAE=30°,BC=3,BD=m,当4≤m≤6时,求CE长的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A→C→B运动,点Q从点A出发以vcm/s的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示,有下列结论:①v=1;②sinB=;③图象C2段的函数表达式为y=﹣x2+x;④△APQ面积的最大值为8,其中正确有( )
A.①②B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有( )
①△CMP∽△BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2;
⑤当△ABP≌△ADN时,BP= 4-4.
A. 1个B. 2个C. 4个D. 3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com