精英家教网 > 初中数学 > 题目详情

如图,在△ABD中,C为AD上一点,AB=CD=1,∠ABC=90°,∠CBD=30°,则AC=


  1. A.
    1
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:①首先利用有30°角的直角三角形的性质和勾股定理,设BE为x,求得DE用x表示;②作DE垂直于AB的延长线于点E,设AC为y,利用平行线分线段成比例,用x表示y;③再利用△ABC∽△AED,求得BC(用含x的式子表示),最后在Rt△ABC中再利用勾股定理建立方程,求出x,从而解决问题.
解答:解:如图,作DE垂直于AB的延长线于点E,
在Rt△BED中,∠EBD=180°-∠ABC-∠CBD=180°-90°-30°=60°,
∴∠BDE=30°,
∴BD=2BE,设BE为x,则DE==x;
∵∠ABC=90°,∠AED=90°,
∴BC∥ED,
=,设AC为y,则y=
又△ABC∽△AED,
=
=,则BC=
在Rt△ABC中,
AB2+BC2=AC2
即12+=
整理得4x4+2x3-2x-1=0,
(2x+1)(2x3-1)=0,
∴2x3-1=0,
x=
∴AC==
故选B.
点评:此题综合考查了勾股定理,相似三角形的判定与性质以及平行线分线段成比例等知识,属于综合题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABD中,AB=AD,AO平分∠BAD,过点D作AB的平行线交AO的延长线于点C,精英家教网连接BC.
(1)求证:四边形ABCD是菱形;
(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程x2-7x+12=0的两根,求AB的长以及菱形ABCD的面积;
(3)若动点M从A出发,沿AC以2m/S的速度匀速直线运动到点C,动点N从B出发,沿BD以1m/S的速度匀速直线运动到点D,当M运动到C点时运动停止.若M、N同时出发,问出发几秒钟后,△MON的面积为
14
m2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB的中点,△DEF的面积为3.5,则△ABC的面积为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABD中,∠B=90°,C是BD上一点,DC=10,∠ADB=45°,∠ACB=60°,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•溧水县一模)如图,在△ABD中,∠A=∠B=30°,以AB边上一点O为圆心,过A,D两点作⊙O交AB于C.
(1)判断直线BD与⊙O的位置关系,并说明理由;
(2)连接CD,若CD=5,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD中,∠ABC=45゜,AC、BF为高,AC、BF相交于E点.
(1)求证:BE=AD; 
(2)过C点作CM∥AB交AD于M点,连EM,求证:BE=AM+EM.

查看答案和解析>>

同步练习册答案