精英家教网 > 初中数学 > 题目详情
11.在半径为2cm的⊙O中,弦AB的长为2$\sqrt{3}$cm,则这条弦所对的圆周角为60°或120°.

分析 首先根据题意画出图形,过点O作OD⊥AB于点D,通过垂径定理,即可推出∠AOD的度数,求得∠AOB的度数,然后根据圆周角定理,即可推出∠AMB和∠ANB的度数.

解答 解:连接OA,过点O作OD⊥AB于点D,
∵OA=2cm,AB=2$\sqrt{3}$cm,
∴AD=BD=2$\sqrt{3}$,
∴AD:OA=$\sqrt{3}$:2,
∴∠AOD=60°,
∴∠AOB=120°,
∴∠AMB=60°,
∴∠ANB=120°.
故答案为:60°或120°.

点评 本题主要考查圆周角定理、垂径定理,关键在于根据题意正确的画出图形,运用圆周角定理和垂径定理认真的进行分析.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,已知:在△ABC中,AB=AC.
(1)用尺规作图法作出∠A的平分线,交BC于点D,请保留作图痕迹,不写作法;
(2)求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.单项式-32xy2z3的系数和次数分别是(  )
A.-1,8B.-3,8C.-9,6D.-9,3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.当x=3时代数式ax-2的值等于4,则当x=-3时代数式ax-2的值等于-8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知二次函数的顶点坐标为A(1,-4),且经过点B(3,0).
(1)求该二次函数的解析式;
(2)判断点C(2,-3)、D(-1,1)是否在该函数图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.昆明在修建地铁3号线的过程中,要打通隧道3600米,为加快城市建设,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成了任务.问原计划每天打通隧道多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,点O是半径为2的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和弧BC都经过圆心O,则阴影部分的面积是$\frac{4π}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在△ABC中,∠ACB=90°,若点G是△ABC的重心,cos∠BCG=$\frac{2}{3}$,BC=4,则CG=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知x=3是方程2x-m=-1的解,则m的值是(  )
A.-7B.-5C.5D.7

查看答案和解析>>

同步练习册答案