分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答 解:①∵抛物线的开口向下,
∴a<0,
∵与y轴的交点为在y轴的正半轴上,
∴c>0,
∵对称轴为x=-$\frac{b}{2a}$>0,
∴a、b异号,即b>0,
∴abc<0;
故本结论错误;
②从图象知,该函数与x轴有两个不同的交点,所以根的判别式△=b2-4ac>0;
故本结论正确;
③∵对称轴为x=-$\frac{b}{2a}$=1,
∴b=-2a,
故本结论正确;
④由图象知,x=1时y>2,所以a+b+c>2,故本结论正确.
故答案为②③④.
点评 本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (4,4) | B. | (3,-1) | C. | (-3,-1) | D. | (-$\frac{1}{2}$,-$\frac{7}{4}$) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | α | B. | 90°-α | C. | $\frac{α}{2}$ | D. | 90$°-\frac{α}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{12}$ | B. | $\sqrt{\frac{3}{2}}$ | C. | $\sqrt{\frac{2}{3}}$ | D. | $\sqrt{18}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x (x-10)=200 | B. | 2x+2 (x-10)=200 | C. | x(x+10)=200 | D. | 2x+2(x+10)=200 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com