【题目】某公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆来完成此项任务. 已知每辆甲种货车一次最多运送机器45台、租车费用400元,每辆乙种货车一次最多运送机器30台租车费用280元. 设租用甲种货车辆(为正整数)
(1)请用含的代数式表示租车费用;
(2)存在能完成此项运送任务的最节省费用的租车方案吗?若存在,请计算并给出租车方案;若不存在,请说明理由.
科目:初中数学 来源: 题型:
【题目】如图,已知:∠MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7 的边长为【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC。
(1)如图①,若点O在BC上,求证:AB=AC;
(2)如图②,若点O在△ABC的内部,上题的结论还成立吗?为什么?
(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,图中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连结DC.
(1)图2中的全等三角形是_______________,并给予证明(说明:结论中不得含有未标识的字母);
(2)指出线段DC和线段BE的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一块矩形板材ABCD,AB=3米,AD=6米,E,F,G分别在AD,AB,BC上,∠EFG=900,EF=FG= 米,AF<BF.现想从此板材中剪出一个四边形EFGH,使得∠EHG=450,则四边形EFGH面
积的最大值是____________平方米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将四张边长各不相同的正方形纸片按如图方式放入矩形内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为.若知道的值,则不需测量就能知道周长的正方形的标号为( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过点G作GE⊥AD于点E.若AB=2,且∠1=∠2,则下列结论:①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFOC=.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC 中,D 是 BC 边的中点,E、F 分别在 AD 及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF ≌△CDE;
(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com