精英家教网 > 初中数学 > 题目详情

【题目】我国是最早了解勾股定理的国家之一.下面四幅图中,不能用来证明勾股定理的是(

A. B. C. D.

【答案】C

【解析】

根据ABCD各图形结合勾股定理一一判断可得答案.

:A、有三个直角三角形, 其面积分别为ab,ab,

还可以理解为一个直角梯形,其面积为,由图形可知:

=ab+ab+

整理得:(a+b)=2ab+c,a+b+2ab=2ab+ c, a+b= c

能证明勾股定理;

B、中间正方形的面积= c,中间正方形的面积=(a+b)-4ab=a+b,

a+b= c,能证明勾股定理;

C、不能利用图形面积证明勾股定理, 它是对完全平方公式的说明.

D、大正方形的面积= c,大正方形的面积=(b-a)+4ab = a+b,,

a+b= c,能证明勾股定理;

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知方格纸中的每个小方格都是边长为1个单位的正方形在建立平面直角坐标系后ABC的顶点均在格点上C的坐标为4-1).

1请以y轴为对称轴画出与△ABC对称的△A1B1C1并直接写出点A1B1C1的坐标

2ABC的面积是

3Pa+1b-1与点C关于x轴对称a= b=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某住宅小区在住宅建设时留下一块1798平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带

(1)请你计算出游泳池的长和宽

(2)若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,请你计算要贴瓷砖的总面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.

1)求甲、乙两种商品每件的进价分别是多少元?

2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交

于点A(1,4)、点B(-4,n).

(1)求一次函数和反比例函数的解析式;

(2)求△OAB的面积;

(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中有三点,请回答如下问题:

1)在坐标系内描出点的位置:

2)求出以三点为顶点的三角形的面积;

3)在轴上是否存在点,使以三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:

甲:8、7、9、8、8

乙:7、9、6、9、9

则下列说法中错误的是(

A.甲、乙得分的平均数都是8

B.甲得分的众数是8,乙得分的众数是9

C.甲得分的中位数是9,乙得分的中位数是6

D.甲得分的方差比乙得分的方差小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为,GE=2BG,则折痕EF的长为( )

A. 4 B. C. 2 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则

①二次函数的最大值为a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④当y>0时,﹣1<x<3,其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案