【题目】如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为( )
A. B. C. D.
【答案】C
【解析】根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.
根据折叠,可知:△DCP≌△DEP,
∴DC=DE=4,CP=EP.
在△OEF和△OBP中,,
∴△OEF≌△OBP(AAS),
∴OE=OB,EF=BP.
设EF=x,则BP=x,DF=DE﹣EF=4﹣x,
又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,
∴AF=AB﹣BF=1+x.
在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,
解得:x=,
∴DF=4﹣x=,
∴cos∠ADF=,
故选C.
科目:初中数学 来源: 题型:
【题目】数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点在数轴上分别对应的数为,则的长度可以表示为.
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动个单位长度到达点,再向右移动个单位长度到达点,然后向右移动个单位长度到达点.
请你在图②的数轴上表示出三点的位置.
若点以每秒个单位长度的速度向左移动,同时,点和点分别以每秒个单位长度和个单位长度的速度向右移动,设移动时间为秒.
①当时,求和的长度;
②试探究:在移动过程中,的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 以下沿AB折叠的方法中,不一定能判定纸带两条边a,b互相平行的是( )
A.如图①,展开后测得∠1=∠2B.如图②,展开后测得∠1=∠2,且∠3=∠4
C.如图③,展开后测得∠1=∠2,且∠3=∠4D.如图④,展开后测得∠1+∠2=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )
A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AD上一点,F是BA延长线上的一点,AF=AE,.
(1)求证:△ABE≌△ADF
(2)线段BE与DF有什么关系?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α, 以OC为边作等边三角形OCD,连接AD.
(1)当α=150°时,试判断△AOD的形状,并说明理由;
(2)探究:当a为多少度时,△AOD是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为( )
A. B. 2 C. D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.
(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com