精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形纸片ABCD,AB=4,BC=3,点PBC边上,将CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cosADF的值为(  )

A. B. C. D.

【答案】C

【解析】根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=BOP、B=E、OP=OF可得出OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在RtDAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cosADF的值.

根据折叠,可知:DCP≌△DEP,

DC=DE=4,CP=EP.

OEFOBP中,

∴△OEF≌△OBP(AAS),

OE=OB,EF=BP.

EF=x,则BP=x,DF=DE﹣EF=4﹣x,

又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,

AF=AB﹣BF=1+x.

RtDAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2

解得:x=

DF=4﹣x=

cosADF=

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点在数轴上分别对应的数为,则的长度可以表示为

请你用以上知识解决问题:

如图②,一个点从数轴上的原点开始,先向左移动个单位长度到达点,再向右移动个单位长度到达点,然后向右移动个单位长度到达点.

请你在图②的数轴上表示出三点的位置.

若点以每秒个单位长度的速度向左移动,同时,点和点分别以每秒个单位长度和个单位长度的速度向右移动,设移动时间为秒.

①当时,求的长度;

②试探究:在移动过程中,的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 以下沿AB折叠的方法中,不一定能判定纸带两条边ab互相平行的是(  )

A.如图①,展开后测得∠1=2B.如图②,展开后测得∠1=2,且∠3=4

C.如图③,展开后测得∠1=2,且∠3=4D.如图④,展开后测得∠1+2=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠CAB=DBA,再添加一个条件,不一定能判定ABC≌△BAD的是(  )

A. AC=BDB. 1=2C. AD=BCD. C=D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EAD上一点,FBA延长线上的一点,AF=AE,.

1)求证:ABE≌△ADF

2)线段BEDF有什么关系?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点O是等边三角形ABC内一点,AOB=110°BOC=α, OC为边作等边三角形OCD,连接AD.

1α=150°时,试判断AOD的形状,并说明理由;

2探究:当a为多少度时,AOD是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为(  )

A. B. 2 C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠A=C=90°BEDF分别是∠ABCADC的平分线.

11与∠2有什么关系,为什么?

2BEDF有什么关系?请说明理由.

查看答案和解析>>

同步练习册答案