精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,直线y=x+b与y轴交于点A且经过点B(2,3),已知点C坐标为(2,0),点C1,C2,C3,…,Cn-1(n≥2)将线段OCn等分,图中阴影部分由n个矩形构成,记梯形AOCB面积为S,阴影部分面积为S′.
下列四个结论中,正确的是________.(写出所有正确结论的序号)
①S=2﹔
②S′=4-数学公式
③随着n的增大,S′越来越接近S﹔
④若从梯形AOCB内任取一点,则该点取自阴影部分的概率是数学公式

②③④
分析:将点B的坐标代入直线解析式可求出b的值,继而确定函数解析式,利用梯形的面积公式计算出S,可判断①;计算出空白小三角形的面积和,用S减去这些小三角形的面积即可得出S',则可判断②;根据S'的表达式可判断③,用阴影部分的面积÷梯形面积,可判断④.
解答:将点B(2,3)代入直线解析式可得:3=2+b,
解得:b=1,
故直线解析式为:y=x+1,
令x=0,则y=1,
故点A的坐标为(0,1),
S=(OA+BC)×OC=×4×2=4,故①错误;
将OC n等分,则每一部分的长为
S小三角形=×(3-1)=
则S′=4-,故②正确;
∵S′=4-
∴随着n的增大,S′越来越接近S,故③正确;
若从梯形AOCB内任取一点,则该点取自阴影部分的概率===,故④正确;
综上可得:②③④正确.
故答案为:②③④.
点评:本题考查了一次函数的综合,解答本题的关键是确定直线解析式,求出点的A的坐标,技巧在于S'的求解,小三角形的高之和为点B的纵坐标与点A的纵坐标之差,这是需要我们仔细观察得出.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案