精英家教网 > 初中数学 > 题目详情

【题目】已知a,b,c为有理数,且它们在数轴上的位置如图所示.

(1)试判断a,b,c的正负性;

(2)根据数轴化简:

|a|=_____; |b|=_____:

|c|=_____; |-a|=_____;

|-b|=_____; |-c|=_____.

(3)|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.

【答案】(1)a为负,b为正,c为正;(2) -a,b ,c,-a ,b,c ;(3)a=-5.5,b=2.5,c=5

【解析】

(1)由数轴即可判定a,b,c的正负性;
(2)由相反数的定义可画图;
(3)由绝对值的定义求解即可;
(4)由a,b,c的正负性求解即可.

(1)由数轴可得a是负数,b正数,c是正数;
(2)如图:

(3)①|a|=-a,②|b|=b,③|c|=c,④|-a|=-a,⑤|-b|=b,⑥|-c|=c.
故答案为:-a,-b,c,-a,-b,c.
(4)∵|a|=5.5,|b|=2.5,|c|=5,
∴a=-5.5,b=2.5,c=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,斜坡AB的坡度是i=1:2,坡角B处有一棵树BC,某一时刻测得树BC在斜坡AB上的影子BD的长度是10米,这时测得太阳光线与水平线的夹角为60°,则树BC的高度为多少米?(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=∠B=90°,EAB上的一点,且AE=BC,∠1=∠2.

求证:(1)△ADE≌△BEC

(2)△CDE是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料.

点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA=  ,BD=  

(2)|1﹣(﹣4)|表示哪两点的距离?

(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=  ,当BP=4时,x=  ;当|x﹣3|+|x+2|的值最小时,x的取值范围是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)如图2,当直线AC与⊙O相切时,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,BAC=90°,AB=AC,在ABC的外部作ACM,使得ACM=ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.

(1)如图1所示,当点D与点B重合时,延长BA,CM交点N,证明:DF=2EC;

(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你在图2中画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD为正方形,AB=2 ,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.

(1)求证:矩形DEFG是正方形;
(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由;
(3)设AE=x,四边形DEFG的面积为S,求出S与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,A1B1A2. A2B2A3A3B3A4……均为等边三角形,若OA1=l,则A6B6A7 的边长为【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刚同学动手剪了如图所示的正方形与长方形纸片若干张

(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是

(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片 张,3号卡片 张;

(3)当他拼成如图所示的长方形,根据6张小纸片的面积和等于打纸片(长方形)的面积可以把多项式a2+3ab+2b2分解因式,其结果是

(4)动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2= 画出拼图

查看答案和解析>>

同步练习册答案