【题目】某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据绘制如下的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图(1)所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图(2)所示。(销售额=销售单价×销售量)
(1)直接写出y与x之间的函数解析式;
(2)分别求第10天和第15天的销售额;
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中,“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
【答案】解:(1)。
(2)∵第10天和第15天在第10天和第20天之间,
∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
∵点(10,10),(20,8)在z=mx+n的图象上,
∴,解得: 。
∴。
当x=10时, ,y=2×10=20,销售金额为:10×20=200(元);
当x=15时, ,y=2×15=30,销售金额为:9×30=270(元)。
故第10天和第15天的销售金额分别为200元,270元。
(3)若日销售量不低于24千克,则y≥24。
当0≤x≤15时,y=2x,
解不等式2x≥24,得x≥12;
当15<x≤20时,y=﹣6x+120,
解不等式﹣6x+120≥24,得x≤16。
∴12≤x≤16。
∴“最佳销售期”共有:16﹣12+1=5(天)。
∵(10≤x≤20)中<0,∴p随x的增大而减小。
∴当12≤x≤16时,x取12时,p有最大值,此时=9.6(元/千克)。
故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元
【解析】试题分析:(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解:
①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2。
∴y=2x(0≤x≤15);
②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
∵点(15,30),(20,0)在y=k2x+b的图象上,
∴,解得: 。
∴y=﹣6x+120(15<x≤20)。
综上所述,可知y与x之间的函数关系式为: 。
(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额。
(3)日销售量不低于24千克,即y≥24.先解不等式2x≥24,得x≥12,再解不等式﹣6x+120≥24,得x≤16,则求出“最佳销售期”共有5天;然后根据(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值。
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.
【1】如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系PD+PE+PF=AB;当点P在△ABC内,先在图2中作出图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论
【2】当点P在△ABC外,先在图3中作出图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列变形正确的是( )
A. 4x﹣5=3x+2变形得 4x﹣3x=2﹣5
B. 变形得x=1
C. 3(x﹣1)=2(x+3)变形得3x﹣1=2x+6
D. 变形得3x=15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学小组的两位同学准备测量两幢教学楼之间的距离,如图,两幢教学楼AB和CD之间有一景观池(AB⊥BD,CD⊥BD),一同学在A点测得池中喷泉处E点的俯角为42°,另一同学在C点测得E点的俯角为45°(点B,E,D在同一直线上),两个同学已经在学校资料室查出楼高AB=15m,CD=20m,求两幢教学楼之间的距离BD.
(结果精确到0.1m,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:(1)13=×12×22;(2)13+23=×22×32;(3)13+23+33=×32×42;(4)13+23+33+43=×42×52;
根据上述等式的规律,解答下列问题:
(1)写出第5个等式:_____;
(2)写出第n个等式(用含有n的代数式表示);
(3)设s是正整数且s≥2,应用你发现的规律,化简:×s2×(s+1)2﹣×(s﹣1)2×s2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】顺丰快递公司派甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1(h)到达B地,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:
(1)分别计算甲、乙两车的速度及a的值;
(2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离S(km)与时间t(h)的函数图象.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com