【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)设P(x,y),PD的长度为l,求l与x的函数关系式,并求l的最大值;
(3)当△ADP是直角三角形时,求点P的坐标.
【答案】
(1)
解:∵抛物线的顶点为Q(2,﹣1),
∴设y=a(x﹣2)2﹣1,
将C(0,3)代入上式得3=a(0﹣2)2﹣1,
解得:a=1,
∴y=(x﹣2)2﹣1,即y=x2﹣4x+3
(2)
解:令y=0,得x2﹣4x+3=0,解得x1=1,x2=3,
∵点A在点B的右边,
∴A (3,0),B(1,0)
设直线AC的函数关系式为y=mx+n,
将A(3,0),C(0,3)代入上式得, ,解得: ,
∴y=﹣x+3.
∵D在y=﹣x+3上,P在y=x2﹣4x+3上,且PD∥y轴,
∴D(x,﹣x+3),P(x,x2﹣4x+3),
∴l=PD=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x=
∴当 时,l取得最大值为
(3)
解:分两种情况:
①当点P为直角顶点时,如图1,点P与点B重合,
由(2)可知B(1,0),
∴P(1,0).
②当点A为直角顶点时,如图2,
∵OA=OC,∠AOC=90°,
∴∠OAD=45°,
当∠DAP=90°时,∠OAP=45°,
∴AO平分∠DAP,
又∵PD∥y轴,
∴PD⊥AO,
∴P与D关于x轴对称,
∵D(x,﹣x+3),P(x,x2﹣4x+3),
∴(﹣x+3)+(x2﹣4x+3)=0,
整理得x2﹣5x+6=0,
∴x1=2,x2=3(舍去),
当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1,
∴P的坐标为P(2,﹣1).
∴满足条件的P点坐标为P(1,0),P(2,﹣1)
【解析】(1)设y=a(x﹣2)2﹣1,将C(0,3)代入求得a的值,从而得到抛物线的解析式;(2)令y=0,得x2﹣4x+3=0,求得方程方程的解,从而可得到点A、B的坐标,设直线AC的函数关系式为y=mx+n,将A(3,0),C(0,3)代入可求得m、n的值,故此可得到AC的解析式为y=﹣x+3上,设D(x,﹣x+3),P(x,x2﹣4x+3),然后依据l=Dy﹣Py列出l与x的函数关系式,依据二次根式的性质可求得PD的最大值;(3)①当点P为直角顶点时,点P与点B重合,②当点A为直角顶点时,可证明∠DAO=∠PAO,然后可证明点D与P关于x轴对称,设D(x,﹣x+3),P(x,x2﹣4x+3),依据关于x轴对称点的纵坐标互为相反数可列出关于x的方程,从而可求得x的值,故此可求得点P的坐标.
【考点精析】关于本题考查的二次函数的性质,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】某中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有 人;扇形统计图中a= ;
(2)补全条形统计图;
(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y=x的图象相交于点(2,a),求:
(1)a的值.
(2)k,b的值.
(3)这两个函数图象与x轴所围成的三角形的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于的方程有增根,则的值为__________.
【答案】2
【解析】方程两边都乘(x2),得
x+x2=a,即a=2x2.
分式方程的增根是x=2,
∵原方程增根为x=2,
∴把x=2代入整式方程,得a=2,
故答案为:2.
点睛:本题考查了分式方程的增根,增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.
【题型】填空题
【结束】
17
【题目】反比例函数y=的图象经过点(1,6)和(m,-3),则m= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)结合图像写出不等式的解集;
(3)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
【答案】(1)y=,y=-x+7(2)0<x<2或x>12(3)点E的坐标为(0,5)或(0,9)
【解析】试题分析:(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线,求出k、b的值,从而得出一次函数的解析式;
(2)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.
解:(1)把点A(2,6)代入y=,得m=12,则y=.
把点B(n,1)代入y=,得n=12,则点B的坐标为(12,1).
由直线y=kx+b过点A(2,6),点B(12,1),
则所求一次函数的表达式为y=﹣x+7.
(2)或;
(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.
∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.
∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).
【题型】解答题
【结束】
26
【题目】太仓市为了加快经济发展,决定修筑一条沿江高速铁路,为了使工程提前半年完成,需要将工作效率提高25%。原计划完成这项工程需要多少个月?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与反比例函数 (为常数,且)的图像交于
两点.
(1)求反比例函数的表达式;
(2)在轴上找一点,使的值最小,求满足条件的点的坐标;
(3)在(2)的条件下求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个与,保持不动,且的一边,另一边DE与直线OB相交于点F.
若,,解答下列问题:
如图,当点E、O、D在同一条直线上,即点O与点F重合,则______;
当点E、O、D不在同一条直线上,画出图形并求的度数;
在的前提下,若,,且,请直接写出的度数用含、的式子表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:
文文:“过点A作BC的中垂线AD,垂足为D”;
彬彬:“作△ABC的角平分线AD”.
数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”
(1)请你简要说明文文的辅助线作法错在哪里;
(2)根据彬彬的辅助线作法,完成证明过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com