精英家教网 > 初中数学 > 题目详情

【题目】若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.

(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;
(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;
(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.

【答案】
(1)

解:∵AD∥BC,

∴∠ABC+∠BAD=180°,∠ADB=∠DBC.

∵∠BAD=120°,

∴∠ABC=60°.

∵BD平分∠ABC,

∴∠ABD=∠DBC=30°,

∴∠ABD=∠ADB,

∴△ADB是等腰三角形.

在△BCD中,∠C=75°,∠DBC=30°,

∴∠BDC=∠C=75°,

∴△BCD为等腰三角形,

∴BD是梯形ABCD的和谐线


(2)

解:由题意作图为:图2,图3


(3)

解:∵AC是四边形ABCD的和谐线,

∴△ACD是等腰三角形.

∵AB=AD=BC,

如图4,

当AD=AC时,

∴AB=AC=BC,∠ACD=∠ADC

∴△ABC是正三角形,

∴∠BAC=∠BCA=60°.

∵∠BAD=90°,

∴∠CAD=30°,

∴∠ACD=∠ADC=75°,

∴∠BCD=60°+75°=135°.

如图5,

当AD=CD时,

∴AB=AD=BC=CD.

∵∠BAD=90°,

∴四边形ABCD是正方形,

∴∠BCD=90°

如图6,

当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,

∵AC=CD.CE⊥AD,

∴AE= AD,∠ACE=∠DCE.

∵∠BAD=∠AEF=∠BFE=90°,

∴四边形ABFE是矩形.

∴BF=AE.

∵AB=AD=BC,

∴BF= BC,

∴∠BCF=30°.

∵AB=BC,

∴∠ACB=∠BAC.

∵AB∥CE,

∴∠BAC=∠ACE,

∴∠ACB=∠ACE= ∠BCF=15°,

∴∠BCD=15°×3=45°.


【解析】(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在 中点时构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD的度数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在△ABC中,DE∥BC,DF∥AC,则下列比例式不正确的是(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.

(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;
(2)如图2,点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;
(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4 a,连接KB并延长交抛物线于点Q,求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别交于点.点的坐标为(,0),点 的坐标为(,0).

(1)求的值;

(2)若点)是第二象限内的直线上的一个动点.当点运动过程中,试写出的面积的函数关系式,并写出自变量的取值范围;

(3)探究:当运动到什么位置时,的面积为,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.
(1)求y与x之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育商店购进一批甲、乙两种足球,已知3个甲种足球的进价与2个乙种足球的进价的和为142元,2个甲种足球的进价与4个乙种足球的进价的和为164元.
(1)求每个甲、乙两种足球的进价分别是多少?
(2)如果购进甲种足球超过10个,超出部分可以享受7折优惠.商场决定在甲、乙两种足球选购其中一种,且数量超过10个,试帮助体育商场判断购进哪种足球省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(
A.2
B.8
C.2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)计算被抽取的天数;
(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;
(3)请估计该市这一年(365天)达到“优”和“良”的总天数.

查看答案和解析>>

同步练习册答案