精英家教网 > 初中数学 > 题目详情

【题目】如图,直线轴、轴分别交于点.点的坐标为(,0),点 的坐标为(,0).

(1)求的值;

(2)若点)是第二象限内的直线上的一个动点.当点运动过程中,试写出的面积的函数关系式,并写出自变量的取值范围;

(3)探究:当运动到什么位置时,的面积为,并说明理由.

【答案】(1)见解析;(2)见解析;(3)见解析.

【解析】

试题(1)将点E坐标(-8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;

(2)由点A的坐标为(-6,0)可以求出OA=6,求OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.

(3)根据OPA的面积为代入(2)的解析式求出x的值,再求出y的值就可以求出P点的位置.

(1)∵点E(﹣8,0)在直线y=kx+6上,

∴0=﹣8k+6,

∴k=

(2)∵k=

直线的解析式为:y=x+6,

P点在y=x+6上,设P(x, x+6),

∴△OPA以OA为底的边上的高是|x+6|,

当点P在第二象限时,|x+6|=x+6,

点A的坐标为(﹣6,0),

∴OA=6.

∴S==x+18.

P点在第二象限,

∴﹣8<x<0;

(3)设点P(m,n)时,其面积S=

解得|n|=

则n1=或者n2=﹣(舍去),

当n=时, =m+6,

则m=

故P(﹣)时,三角形OPA的面积为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙、并三位同学参加数学综合素质测试各项成绩如下单位:分

同学

成绩

数与代数

图形与几何

统计与概率

综合与实践

90

93

89

90

94

92

94

86

92

91

90

88

甲、乙、丙三位同学成绩的中位数分别为______;

如果数与代数、图形与几何、统计与概率、综合与实践的成绩按3:3:2:2计算,分别计算甲、乙、丙三位同学的数学综合素质测试成绩,从成绩看,应推荐谁参加更高级别的比赛?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算:(﹣1)2014﹣|﹣ |+ ﹣( ﹣π)0
(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顺次连接菱形各边的中点所形成的四边形是(
A.等腰梯形
B.矩形
C.菱形
D.正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某镇组织20辆汽车装运完ABC三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:

1)设装运A种脐橙的车辆数为,装运B种脐橙的车辆数为,求之间的函数关系式;

2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;

3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.

(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度数.
②若⊙O的半径为2 ,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).
①如图1,若BC=4m,则S=m.
②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB‖ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:

(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.

(Ⅱ)∠AOB是一个任意角,在边OA,OB上分别取OM=ON,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.

(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.

(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.

查看答案和解析>>

同步练习册答案