精英家教网 > 初中数学 > 题目详情

【题目】(本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.

(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度数.
②若⊙O的半径为2 ,求线段EF的长.

【答案】
(1)

解:∵直线与⊙O相切,

∴OC⊥CD;

又∵AD⊥CD,

∴AD//OC,

∴∠DAC=∠OCA;

又∵OC=OA,

∴∠OAC=∠OCA,

∴∠DAC=∠OAC;

∴AC平分∠DAO.


(2)

解:①∵AD//OC,∠DAO=105°,

∴∠EOC=∠DAO=105°;

∵∠E=30°,

∴∠OCE=45°.

②作OG⊥CE于点G,可得FG=CG,

∵OC=2,∠OCE=45°.

∴CG=OG=2,

∴FG=2;

∵在RT△OGE中,∠E=30°,

∴GE=2,

∴EF=GE-FG=2-2.


【解析】(1)利用了切线的性质,平行线的判定和性质,等边对等角,角平分线的判定即可得证。
(2)①根据(1)得出的AD//OC,从而得出同位角相等,再利用三角形的内角和定理即可求出答案;②作OG⊥CE于点G,可得FG=CG,根据等边对等角得出CG=OG=FG=2,在根据勾股定理得出GE,从而求出EF=GE-FG.
【考点精析】认真审题,首先需要了解平行线的判定与性质(由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质),还要掌握三角形的内角和外角(三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列方程中,没有实数根的是(  )
A.2x+3=0
B.﹣1=0
C.
D.+x+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校标准化建设需购进一批电脑和电子白板经过市场考察得知购买1台电脑和2台电子白板需3.5万元购买2台电脑和1台电子白板需要2.5万元.

(1)求每台电脑和每台电子白板各多少万元;

(2)根据学校需要实际购进电脑和电子白板共30总费用30万元请你通过计算求学校购买了电脑和电子白板各多少台.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y1=﹣ x﹣1与反比例函数y2= 的图象交于点A(﹣4,m).
(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;
(2)求出反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别交于点.点的坐标为(,0),点 的坐标为(,0).

(1)求的值;

(2)若点)是第二象限内的直线上的一个动点.当点运动过程中,试写出的面积的函数关系式,并写出自变量的取值范围;

(3)探究:当运动到什么位置时,的面积为,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(2,2),B(4,1),C(4,4).

(1)作出 ABC关于原点O成中心对称的 A1B1C1.
(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在 A1B1C1的内部(不包括顶点和边界),求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元一次不等式组 的解是x<5,则m的取值范围是( )
A.m≥5
B.m>5
C.m≤5
D.m<5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,AD平分BACAEBCB=40°C=70°

1)求DAE的度数;

2)如图②,若把“AEBC”变成“点FDA的延长线上,FEBC”,其它条件不变,求DFE的度数;

3)如图③,若把“AEBC”变成“AE平分BEC”,其它条件不变,DAE的大小是否变化,并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为

查看答案和解析>>

同步练习册答案