精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为一斜坡,其坡角为19.5°,紧挨着斜坡AB底部A处有一高楼,一数学活动小组量得斜坡长AB15m,在坡顶B处测得楼顶D处的仰角为45°,其中测量员小刚的身高BC1.7米,求楼高AD.(参考数据:sin19.5°≈tan19.5°≈ ,最终结果精确到0.1m).

【答案】楼高AD21.0米.

【解析】

CFAD于点F,在直角ABE中求得BE,和AE的长,然后在直角CDE中利用三角函数求得DE的长,根据ADDF+AFCF+BC+BE求解.

CFAD于点F

RtABE中,∵AB15

BEABsin19.5°15sin19.5°

AEABcos19.5°15cos19.5°

RtCDF中,∵CFAE,∠DCF45°

DFCF

ADDF+AFCF+BC+BE15cos19.5°+1.7+15sin19.5°≈21.0m).

答:楼高AD21.0米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.

(1)求每部A型手机和B型手机的销售利润分别为多少元?

(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.

①求y关于n的函数关系式;

②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?

(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016山西省)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg5000kg)的客户有两种销售方案(客户只能选择其中一种方案):

方案A:每千克5.8元,由基地免费送货.

方案B:每千克5元,客户需支付运费2000元.

(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量xkg)之间的函数表达式;

(2)求购买量x在什么范围时,选用方案A比方案B付款少;

(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,以A为圆心,AD长为半径画弧,交边AC于点E,连接CD

1)若∠A=28°,求∠ACD的度数;

2)设BC=aAC=b

①线段AD的长是方程的一个根吗?为什么?

②若AD=EC,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,顶点A13)、B11)、C31).规定“把正方形ABCD先沿x轴翻折,再向左平移一个单位”为一次变换.如此这样,连续经过2018次变换后,正方形ABCD的对角线交点M的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)已知关于的方程

1求证:方程总有两个实数根;

2如果为正整数,且方程的两个根均为整数,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线)与轴交于两点(点在点左侧),与轴交于点,该抛物线的顶点的纵坐标是.

1)求点的坐标;

2)设直线与直线关于该抛物线的对称轴对称,求直线的表达式;

3)平行于轴的直线与抛物线交于点,与直线交于点.若,结合函数图象,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,AB=AC,AEBC边上的高线,BM平分∠ABCAE于点M,经过B,M 两点的⊙OBC于点G,交AB于点F ,FB⊙O的直径.

(1)求证:AM⊙O的切线

(2)当BE=3,cosC=时,求⊙O的半径.

查看答案和解析>>

同步练习册答案