【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:
①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【解析】
试题分析:利用抛物线的对称轴为直线x=﹣=1,则可对①进行判断;利用x=﹣1时,函数值为负数可对②进行判断;通过求出点(﹣2,0)关于直线x=1的对称点为(4,0)可对③进行判断;由抛物线开口向上得到a>0,则b=﹣2a<0,再由抛物线与y轴的交点在x轴下方得到c<0,则可对④进行判断.
解:∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a,即2a+b=0,所以①正确;
∵x=﹣1时,y<0,
∴a﹣b+c<0,即a+c<b,所以②错误;
∵点(﹣2,0)关于直线x=1的对称点为(4,0),
∴抛物线与x轴的另一个交点为(4,0),所以③错误;
∵抛物线开口向上,
∴a>0,
∴b=﹣2a<0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc>0,所以④正确.
故选B.
科目:初中数学 来源: 题型:
【题目】已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三人拿出同样多的钱,合伙订购了同样规格的若干件小饰品,小饰品买来后,甲、乙分别比丙多拿了12件、9件小饰品,最后结算时,乙付给 丙20元,那么甲应付给丙__________元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知P(﹣3,m)和 Q(1,m)是抛物线y=x2+bx﹣3上的两点.
(1)求b的值;
(2)将抛物线y=x2+bx﹣3的图象向上平移k(是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值;
(3)将抛物线y=x2+bx﹣3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果 mx2 + 4x + m2 + 3 = 0 是一个完全平方式,则 m 的值是( )
A. m=±1
B. m=-1
C. m=0
D. m=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
(2)若PA=2,cosB=,求⊙O半径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E在AD上,且EC平分∠BED。
(1)△BEC是否是等腰三角形?证明你的结论。
(2)若AB=1,∠ABE=450,求矩形ABCD的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com