【题目】如图,在直角坐标系中,OA=3,OC=4,点B是y轴上一动点,以AC为对角线作平行四边形ABCD.
(1)求直线AC的函数解析式;
(2)设点,记平行四边形ABCD的面积为,请写出与的函数关系式,并求当BD取得最小值时,函数的值;
(3)当点B在y轴上运动,能否使得平行四边形ABCD是菱形?若能,求出点B的坐标;若不能,说明理由.
【答案】(1);(2) ① 当m≤4时,S=-3m+12,② 当m>4时,S=3m-12(3) (0, )
【解析】
试题分析:(1)根据OA、OC的长度求出A、C坐标,再利用待定系数法求解即可;
(2)根据点B的坐标可得出BC的长,结合平行四边形的面积公式求出S与m的关系式,再根据AD∥y轴即可求出当BD最短时m的值,将其代入解析式即可;
(3)根据菱形的性质找出m的值,从而根据勾股定理求解即可.
试题解析:(1)直线AC的解析式为:
(2) ① 当m≤4时,S=-3m+12
② 当m>4时,S=3m-12
当BD^y轴时,BD最短为4,这时B为CO的中点,
∴m=2,S=-3×2+12=6
(3)存在
当AB=CB时,平行四边形ABCD为菱形.
∴ m2+32=(4-m)2.
解得m= .
∴B(0,).
科目:初中数学 来源: 题型:
【题目】某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,, ,[a]表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,则第2018棵树种植点的坐标为( )
A.(3,2018)B.(2,2019)C.(2,403)D.(3,404)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情景:如图1,在等腰直角三角形ABC中∠ACB=90°,BC=a.将AB绕点B顺时针旋转90°得到线段BD,连接CD,过点D作△BCD的BC边上的高DE.
易证△ABC≌△BDE,从而得到△BCD的面积为.
简单应用:如图2,在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含a的代数式表示△BCD的面积,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)求证:四边形ACFD为平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形在平面直角坐标系中, ,,把矩形沿直线对折使点落在点处,直线与的交点分别为,点在轴上,点在坐标平面内,若四边形是菱形,则菱形的面积是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了对一棵倾斜的古杉树AB进行保护,需测量其长度,如图,在地面上选取一点C,测得∠ACB=45,AC=24 m,∠BAC=66.5,求这棵古杉树AB的长度.(结果精确到0.1 m.参考数据:sin66.5≈0.92,cos66.5≈0.40,tan66.5≈2.30)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.
(1)在图1中,EF=___,BF=____;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的S1,S2,若m-n=2,请问S2-S1的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.
(1)求证:四边形CODE是矩形.
(2)若AB=5,AC=6,求四边形CODE的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com