精英家教网 > 初中数学 > 题目详情

【题目】一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表

摸球总次数

“和为”出现的频数

“和为”出现的频率

解答下列问题:

如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______

如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.

【答案】1;(2的值可以为其中一个.

【解析】

1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;

2)根据小球分别标有数字345x,用列表法或画树状图法说明当x=7时,得出数字之和为9的概率,即可得出答案.

1)利用图表得出:

突验次数越大越接近实际概率,所以出现和为8的概率是0.33

2)当x=7

则两个小球上数家之和为9的概率是

x的值不可以取7

∴出现和为9的概率是三分之一,即有3种可能,

3+x=94+x=95+x=9

解得:x=6x=5x=4,故x的值可以为456其中一个.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线ACBD相交于点OECD的中点,连接OE.过点CCFBD交线段OE的延长线于点F,连接DF

求证:(1ODE≌△FCE

2)四边形ODFC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援,海警船到达事故船处所需的时间大约为________小时(用根号表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,动点从点出发,在边上以每秒2的速度向点匀速运动,同时动点从点出发,在边上以每秒的速度向点匀速运动,设运动时间为(),连接

1)若,求的值;

2)若相似,求的值;

3)当为何值时,四边形的面积最小?并求出最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 随机抛掷一枚均匀的硬币,落地后反面一定朝上。

B. 12345中随机取一个数,取得奇数的可能性较大。

C. 某彩票中奖率为,说明买100张彩票,有36张中奖。

D. 打开电视,中央一套正在播放新闻联播。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴相交于两点(点在点的左侧),与轴相交于点为抛物线上一点,横坐标为,且

⑴求此抛物线的解析式;

⑵当点位于轴下方时,求面积的最大值;

⑶设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为

①求关于的函数解析式,并写出自变量的取值范围;

②当时,直接写出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对称轴为直线x=的抛物线经过B20)、C04)两点,抛物线与x轴的另一交点为A

1)求抛物线的解析式;

2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;

3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y轴相交于点A03),与x正半轴相交于点B,对称轴是直线x=1

1)求此抛物线的解析式以及点B的坐标.

2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,MN同时停止运动.过动点Mx轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.

①当t为何值时,四边形OMPN为矩形.

②当t0时,BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径作OBC于点D,过点DAC的垂线交AC于点E,交AB的延长线于点F

1)求证:DEO相切;

2)若CDBFAE3,求DF的长.

查看答案和解析>>

同步练习册答案