精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,ABAC,以AB为直径作OBC于点D,过点DAC的垂线交AC于点E,交AB的延长线于点F

1)求证:DEO相切;

2)若CDBFAE3,求DF的长.

【答案】1)见解析;(2DF2

【解析】

1)连接OD,求出ACOD,求出ODDE,根据切线的判定得出即可;
2)求出∠1=2=F=30°,求出AD=DF,解直角三角形求出AD,即可求出答案.

1)证明:连接OD

ABO的直径,

∴∠ADB90°

ADBC

ABAC

∴∠1∠2

OAOD

∴∠2ADO

∴∠1ADO

ODAC

DEAC

∴∠ODFAED90°

ODED

ODO

DEO相切;

2)解:ABACADBC

∴∠1∠2CDBD

CDBF

BFBD

∴∠3F

∴∠4∠3+∠F2∠3

OBOD

∴∠ODB∠42∠3

∵∠ODF90°

∴∠3F30°∠4ODB60°

∵∠ADB90°

∴∠2∠130°

∴∠2F

DFAD

∵∠130°AED90°

AD2ED

AE2+DE2AD2AE3

AD2

DF2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表

摸球总次数

“和为”出现的频数

“和为”出现的频率

解答下列问题:

如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______

如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数分别交y轴、x 轴于A、B两点,抛物线过A、B两点。(1)求这个抛物线的解析式(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N。求当t 取何值时,MN有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角三角形ABC内接于⊙OABAC),ADBC于点DBEAC于点EADAE交于点F

1)如图1,若⊙O直径为10AC8,求BF的长;

2)如图2,连接OA,若OAFAACBF,求∠OAD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x-元二次方程-x2+mx-t=0 (t为实数)l<x<3的范围内有解,则t的取值范围是( )

A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtAOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将AOB绕点B逆时针旋转90°后,得到A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角些标系中,二次函数yax2+bx的图象经过点A(﹣10),C20),与y轴交于点B,其对称轴与x轴交于点D

1)求二次函数的表达式及其顶点的坐标;

2)若Py轴上的一个动点,连接PD,求PB+PD的最小值;

3Mxt)为抛物线对称轴上一个动点,若平面内存在点N,使得以ABMN为顶点的四边形为菱形,则这样的点N共有   个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角ABC中,∠A=60°,∠ACB=45°,以BC为弦作O,交AC于点D,OD与BC交于点E,若AB与O相切,则下列结论:

BOD=90°②DOAB③CD=ADBDE∽△BCD

正确的有(  )

A. ①② B. ①④⑤ C. ①②④⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)

查看答案和解析>>

同步练习册答案