精英家教网 > 初中数学 > 题目详情

【题目】如图,已知E、F、G、H分别是矩形四边AB、BC、CD、DA的中点,且四边形EFGH的周长为16cm,则矩形ABCD的对角线长等于________cm.

【答案】8

【解析】分析:

如图连接AC、BD,由三角形中位线定理结合矩形的性质易得四边形EFGH是菱形,从而可得EF=FG=GH=HE=4cm,这样在△ABC由中位线定理即可求得AC的长.

详解:

如图,连接AC、BD,

四边形ABCD是矩形,

∴AC=BD,

E、F分别AB、BC的中点,

∴EF=AC,

同理可得:HG=AC,FG=BD,EH=BD,

∴EF=FG=HG=EH,

四边形EFGH的周长为16cm,

∴EF=4cm,

∴AC=2EF=8cm.

故答案为8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我区某中学体育组因高中教学需要本学期购进篮球和排球共80个,共花费5800元,已知篮球的单价是80元/个,排球的单价是50元/个.

(1)篮球和排球各购进了多少个(列方程组解答)?

(2)因该中学秋季开学准备为初中也购买篮球和排球,教学资源实现共享,体育组提出还需购进同样的篮球和排球共40个,但学校要求花费不能超过2810元,那么篮球最多能购进多少个(列不等式解答)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在ABC中,AB=AC

1)若DAC的中点,BD把三角形的周长分为24cm30cm两部分,求ABC三边的长;

2)若DAC上一点,试说明ACBD+DC)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,BD,CE分别是∠ABC,ACB平分线,BD,CE相交于点P.

(1)如图1,如果∠A=60°,ACB=90°,则∠BPC= 

(2)如图2,如果∠A=60°,ACB不是直角,请问在(1)中所得的结论是否仍然成立?若成立,请证明:若不成立,请说明理由.

(3)小月同学在完成(2)之后,发CD、BE、BC三者之间存在着一定的数量关系,于是她在边CB上截取了CF=CD,连接PF,可证CDP≌△CFP,请你写出小月同学发现,并完成她的说理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了 名学生;

(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;

(3)请将频数分布直方图补充完整;

(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的函数y=ax2+(a+2)x+a+1的图象与x轴只有一个公共点,求实数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一个棱长为的正方体的每个面等分成个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去个小正方体),所得到的几何体的表面积是(

A. 78 B. 72 C. 54 D. 48

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形OABC,O为平面直角坐标系的原点,A的坐标为(a,0),C的坐标为(0,b)a、b满足,B在第一象限内,P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的线路移动.

(1)B的坐标为_______;当点P移动3.5秒时,P的坐标为__________;

(2)在移动过程中,当点Px轴的距离为4个单位长度时,求点P移动的时间;

查看答案和解析>>

同步练习册答案