【题目】如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2 .
【答案】26
【解析】解:由平移的性质知,DE=AB=8,CF=BE=4,∠DEC=∠B=90°
∴EH=DE﹣DH=5cm
∵HC∥DF
∴△ECH∽△EFD
∴ = = = ,
又∵BE=CF,
∴EC= ,
∴EF=EC+CF= ,
∴S阴影=S△EFD﹣S△ECH= DEEF﹣ ECEH=26cm2 .
【考点精析】掌握平移的性质和相似三角形的判定与性质是解答本题的根本,需要知道①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD、BEFG均为正方形,
(1)如图1,连接AG、CE,试判断AG和CE的数量和位置关系并证明.
(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.
(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中:
①两条对角线互相平分且相等的四边形是正方形;
②菱形的一条对角线平分一组对角;
③顺次连结四边形各边中点所得的四边形是平行四边形;
④两条对角线互相平分的四边形是矩形;
⑤平行四边形对角线相等.
真命题的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在两个直角三角形中,若有一对角(非直角)相等,一对边相等,则两个直角三角形( )
A. 一定全等 B. 一定不全等 C. 不一定全等 D. 以上都不是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com