【题目】已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.
(1)求证:△BDE∽△CFD;
(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;
(3)当△AOF是等腰三角形时,求BE的长.
【答案】
(1)
解:∵AB=AC,
∴∠B=∠C,
∵∠EDC=∠B+∠BED,
∴∠FDC+∠EDO=∠B+∠BED,
∵∠EDO=∠B,
∴∠BED=∠EDC,
∵∠B=∠C,
∴△BDE∽△CFD
(2)
解:过点D作DM∥AB交AC于M(如图1中).
∵△BDE∽△CFD,
∴ ,∵BC=8,BD=3,BE=x,
∴ ,
∴FC= ,
∵DM∥AB,
∴ ,即 = ,
∴DM= ,
∵DM∥AB,
∴∠B=∠MDC,
∴∠MDC=∠C,
∴CM=DM= ,FM= ﹣ ,
∵DM∥AB,
∴ = ,即 = ,
∴y= (0<x<3)
(3)
解:①当AO=AF时,
由(2)可知AO=y= ,AF=FC﹣AC= ﹣5,
∴ = ﹣5,解得x= .
∴BE=
②当FO=FA时,易知DO=AM= ,作DH⊥AB于H(如图2中),
BH=BDcos∠B=3× = ,
DH=BDsin∠B=3× = ,
∴HO= = ,
∴OA=AB﹣BH﹣HO= ,
由(2)可知y= ,即 = ,解得x= ,
∴BE= .
③当OA=OF时,设DP与CA的延长线交于点N(如图3中).
∴∠OAF=∠OFA,∠B=∠C=∠ANE,
由△ABC≌△CDN,可得CN=BC=8,ND=5,
由△BDE≌△NAE,可得NE=BE=x,ED=5﹣x,
作EG⊥BC于G,则BG= x,EG= x,
∴GD= ,
∴BG+GD= x+ =3,
∴x= >3(舍弃),
综上所述,当△OAF是等腰三角形时,BE= 或
【解析】(1)根据两角对应相等两三角形相似即可证明.(2)过点D作DM∥AB交AC于M(如图1中).由△BDE∽△CFD,得 ,推出FC= ,由DM∥AB,得 ,推出DM= ,由DM∥AB,推出∠B=∠MDC,∠MDC=∠C,CM=DM= ,FM= ﹣ ,于DM∥AB,得 ,代入化简即可.(3)分三种情形讨论①当AO=AF时,②当FO=FA时,③当OA=OF时,分别计算即可.
科目:初中数学 来源: 题型:
【题目】去年6月某日自治区部分市、县的最高气温(℃)如下表:
区县 | 吐鲁番 | 塔城 | 和田 | 伊宁 | 库尔勒 | 阿克苏 | 昌吉 | 呼图壁 | 鄯善 | 哈密 |
气温(℃) | 33 | 32 | 32 | 30 | 30 | 29 | 29 | 31 | 30 | 28 |
则这10个市、县该日最高气温的众数和中位数分别是( )
A.32,32
B.32,30
C.30,30
D.30,32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,Rt△ABC中,∠C=90°,AC=6,BC=8,以B为圆心,半径为3的⊙O沿BC方向以每秒1个单位的速度平移,当⊙O运动到与直线相交于点C时(点O在BC上),⊙O停止运动.
(1) (2) (3)
(1)当运动停止时,试判断直线AB与⊙O的位置关系,并证明你的结论;
(2)在平移过程中,若⊙O与AB相切于点D,连接CD , 求△ACD的面积;
(3)在平移过程中,若⊙O经过AB的中点G时, E、F为OC上的两个动点,且EF=1.6,当四边形AGEF的周长最小时,试求OE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知定点A(1,0)和B(0,1).
(1)如图1,若动点C在x轴上运动,则使△ABC为等腰三角形的点C有几个?
(2)如图2,过点A,B向过原点的直线l作垂线,垂足分别为M、N,试判断线段AM、BN、MN之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一张矩形纸片ABC的按如图方式折叠,使顶点B落在边AD上(记为点B′),点A落在点A′处,折痕分别与边AD、BC交于点E、F.
(1)试在图中连接BE,求证:四边形BFB′E是菱形;
(2)若AB=8,BC=16,求线段BF长能取到的整数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣ 上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是( )
A.y=x
B.y=x+1
C.y=x+2
D.y=x+3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(m,4).
(1)求m、n的值;
(2)设一次函数的图象与x轴交于点B,求△AOB的面积;
(3)直接写出使函数的值小于函数的值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )
A.A→O→B
B.B→A→C
C.B→O→C
D.C→B→O
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com