精英家教网 > 初中数学 > 题目详情

【题目】如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣ 上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是( )

A.y=x
B.y=x+1
C.y=x+2
D.y=x+3

【答案】C
【解析】解:分别把点A(a,1)、B(﹣1,b)代入双曲线y=﹣ 得a=﹣3,b=3,则点A的坐标为(﹣3,1)、B点坐标为(﹣1,3),
作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点坐标为(﹣3,﹣1),D点坐标为(1,3),
连结CD分别交x轴、y轴于P点、Q点,此时四边形PABQ的周长最小,
设直线CD的解析式为y=kx+b,

把C(﹣3,﹣1),D(1,3)分别代入
解得
所以直线CD的解析式为y=x+2.
故选C.
【考点精析】关于本题考查的反比例函数的性质,需要了解性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,梯形ABCD中,ADBCB=90°,AD=AB=4,BC=7,点EBC边上,将CDE沿DE折叠,点C恰好落在AB边上的点C'处.

(1)求∠C'DE的度数;

(2)求C'DE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC、BD相交于点O,点E、F分别是线段AO、BO的中点,若AC+BD=22cm,△OAB的周长是16cm,则EF的长为cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.

(1)求证:△BDE∽△CFD;
(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;
(3)当△AOF是等腰三角形时,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).

1)求出点A、点B运动的速度,并在数轴上标出AB两点从原点出发运动3秒时的位置;

2)若AB两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?

3)若AB两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图中所有的三角形都是直角三角形,四边形都是正方形,已知正方形A,B,C,D的边长分别是12,16,9,12,则最大正方形E的面积是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)
(1)当B(﹣4,0)时,求抛物线的解析式;
(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;
(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4表示,则顶点A2018的坐标是(  )

A. (504,﹣504) B. (﹣504,504) C. (505,﹣505) D. (﹣505,505)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

同步练习册答案