精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕 点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF、CF.

(1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形.

(2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由.

【答案】(1)见解析;(2)见解析

【解析】试题分析:(1)由正方形的性质可以得出AB=BC,ABP=ABC=90°,可以得出PBA≌△FBC,由其性质就可以得出结论;

(2)由正方形的性质可以得出AB=BC,FBC=ABC=90°,可以得出PBA≌△FBC,由其性质就可以得出结论.

试题解析:(1)证明:∵在正方形ABCD中,AB=BC,ABC=ABP=90

又∵BF=BP,

∴△BCF≌△BAP(SAS),

CF=AP,BFC=BPA.

又由旋转得:∠EPA=90,PA=PE,

PE=CF.∵∠BFC+BCF=90

∴∠BPA+BCF=90

∴∠BPA+EPA+BCF=180

PECF.

∴四边形PCFE为平行四边形.

(2)四边形PCEF是平行四边形.

证明:同(1)得:BCF≌△BAP,

∴∠BCF=BAP,AP=CF.

由旋转得:AP=PE,EPA=90

PE=CF.

∴∠BPE+BPA=90

∵在ABP中,∠ABP=90

∴∠BAP+BPA=90BPE=BAP,

∴∠BPE=BCF,

PECF,

∴四边形PCFE为平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】绵阳人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.
(1)求证:EF是⊙O的切线;
(2)若EB= ,且sin∠CFD= ,求⊙O的半径与线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在“6·26国际禁毒日”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作了频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:

(1)表中___ ____,并补全直方图;

(2)若用扇形统计图描述此成绩统计分布情况,则分数段80≤<100对应扇形的圆心角度数是___

(3)请估计该年级分数在60≤<70的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.

1)七年级(2)班有男生、女生各多少人?

2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C(0, ).

(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得△ACP是以点A为直角顶点的直角三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点G为抛物线上的一动点,过点G作GE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=kx+b(k≠0)和反比例函数y2= (m≠0)的图象交于点A(﹣1,6),B(a,﹣2).
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接写出y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一假期,成都某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:

若去丙地的车票占全部车票的,则总票数为______ 张,去丁地的车票有______

若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张所有车票的形状、大小、质地完全相同、均匀,那么员工小胡抽到去甲地的车票的概率是多少?

若有一张车票,小王和小李都想要,他们决定采取掷一枚质地均匀的正方体骰子的方式来确定给谁,其上的数字是3的倍数,则给小王,否则给小李请问这个规则对双方是否公平?若公平请说明理由;若不公平,请通过计算说明对谁更有利.

查看答案和解析>>

同步练习册答案