精英家教网 > 初中数学 > 题目详情

【题目】1)如图1中,ABC为正三角形,点EAB边上任一点,以CE为边作正DEC,连结AD.求的值.

2)如图2中,ABC为等腰直角三角形,∠A90°,点E为腰AB上任意一点,以CE为斜边作等腰直角CDE,连结AD.求的值;

3)如图3中,ABC为任意等腰三角形,点E为腰AB上任意一点,以CE为底边作等腰DEC,使DEC∽△ABC,并且BCAC.连结AD,直接写出的值.

【答案】11;(2;(3

【解析】

(1)由三角形ABC与三角形CDE都为正三角形,得到AB=AC,CE=CD,以及内角为60°,利用等式的性质得到∠ECB=∠DCA,利用SAS得到三角形ECB与三角形DCA全等,利用全等三角形对应边相等得到BE=AD,即可求出所求之比;
(2)由三角形CDE与三角形ABC都为等腰直角三角形,利用等腰直角三角形的性质得到CE=CD,BC=AC,以及锐角为45°,利用等式的性质得到∠ECB=∠DCA,利用两边对应成比例且夹角相等的三角形相似得到三角形ECB与三角形DCA相似,利用相似三角形对应边成比例即可求出所求之比;
(3)仿照前两问,以此类推得到一般性规律,求出所求之比即可.

解:(1)∵△ABC和△CDE都是正三角形,

∴∠B=∠ACB=∠DCE=60°,AB=AC,CE=DC,

∵∠ECB=∠ACB﹣∠ACE=60°﹣∠ACE,

∠DCA=∠DCE﹣∠ACE=60°﹣∠ACE,

∴∠ECB=∠DCA,

在△ECB和△DCA中,

∴△ECB≌△DCA(SAS),

∴BE=AD,

=1;

(2)∵等腰Rt△ABC和等腰Rt△CDE中,

∴∠B=∠ACB=∠DCE=45°,CE=DC,BC=AC,

∵∠ECB=∠ACB﹣∠ACE=45°﹣∠ACE,

∠ACD=∠DCE﹣∠ACE=45°﹣∠ACE,

∴∠ECB=∠DCA,

∴△ECB∽△DCA,

(3)依此类推,当BC=AC时,,理由为:

∵等腰△ABC和等腰△CDE中,

∴∠B=∠ACB=∠DCE,CE=DC,BC=AC,

∵∠ECB=∠ACB﹣∠ACE,∠ACD=∠DCE﹣∠ACE,

∴∠ECB=∠DCA,

∴△ECB∽△DCA,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象交轴于两点,交轴于点,点的坐标为,顶点的坐标为

(1)求二次函数的解析式和直线的解析式;

(2)点是直线上的一个动点,过点轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;

(3)在抛物线上是否存在异于的点,使边上的高为,若存在求出点的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中 过点A作AEDC,垂足为E,连接BE,F为BE上一点,且AFE=D.

(1)求证:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,把点先向右平移1个单位,再向上平移2个单位的平移称为一次斜平移.已知点A10),点A经过n次斜平移得到点B,点M是线段AB的中点.

1)当n=3时,点B的坐标是 ,点M的坐标是

2)如图1,当点M落在的图像上,求n的值;

3)如图2,当点M落在直线,点C是点B关于直线的对称点,BC与直线相交于点N

①求证:△ABC是直角三角形

②当点C的坐标为(53)时,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点 A、与y轴交于点B,连接AB

1)求证:P为线段AB的中点;

2)求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy(如图)中,抛物线yax2+bx+2经过点A40)、B22),与y轴的交点为C

1)试求这个抛物线的表达式;

2)如果这个抛物线的顶点为M,求AMC的面积;

3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE45°,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,直径垂直于弦,垂足为,连结,将沿翻转得到,直线与直线相交于点

1)求证:的切线;

2)若的中点,,求的半径长;

3)①求证:

②若的面积为,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E是边AD上的点,EFBE,交边CD于点F,联结CEBF,如果tanABE,那么CEBF_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:

1)该班共有     名学生;

2)补全条形统计图;

3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为    

4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(ABC)2位女同学(DE),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.

查看答案和解析>>

同步练习册答案