【题目】(1)如图1中,△ABC为正三角形,点E为AB边上任一点,以CE为边作正△DEC,连结AD.求的值.
(2)如图2中,△ABC为等腰直角三角形,∠A=90°,点E为腰AB上任意一点,以CE为斜边作等腰直角△CDE,连结AD.求的值;
(3)如图3中,△ABC为任意等腰三角形,点E为腰AB上任意一点,以CE为底边作等腰△DEC,使△DEC∽△ABC,并且BC=AC.连结AD,直接写出的值.
【答案】(1)1;(2);(3)
【解析】
(1)由三角形ABC与三角形CDE都为正三角形,得到AB=AC,CE=CD,以及内角为60°,利用等式的性质得到∠ECB=∠DCA,利用SAS得到三角形ECB与三角形DCA全等,利用全等三角形对应边相等得到BE=AD,即可求出所求之比;
(2)由三角形CDE与三角形ABC都为等腰直角三角形,利用等腰直角三角形的性质得到CE=CD,BC=AC,以及锐角为45°,利用等式的性质得到∠ECB=∠DCA,利用两边对应成比例且夹角相等的三角形相似得到三角形ECB与三角形DCA相似,利用相似三角形对应边成比例即可求出所求之比;
(3)仿照前两问,以此类推得到一般性规律,求出所求之比即可.
解:(1)∵△ABC和△CDE都是正三角形,
∴∠B=∠ACB=∠DCE=60°,AB=AC,CE=DC,
∵∠ECB=∠ACB﹣∠ACE=60°﹣∠ACE,
∠DCA=∠DCE﹣∠ACE=60°﹣∠ACE,
∴∠ECB=∠DCA,
在△ECB和△DCA中,
,
∴△ECB≌△DCA(SAS),
∴BE=AD,
则=1;
(2)∵等腰Rt△ABC和等腰Rt△CDE中,
∴∠B=∠ACB=∠DCE=45°,CE=DC,BC=AC,
∴,
∵∠ECB=∠ACB﹣∠ACE=45°﹣∠ACE,
∠ACD=∠DCE﹣∠ACE=45°﹣∠ACE,
∴∠ECB=∠DCA,
∴△ECB∽△DCA,
∴;
(3)依此类推,当BC=AC时,=,理由为:
∵等腰△ABC和等腰△CDE中,
∴∠B=∠ACB=∠DCE,CE=DC,BC=AC,
∴,
∵∠ECB=∠ACB﹣∠ACE,∠ACD=∠DCE﹣∠ACE,
∴∠ECB=∠DCA,
∴△ECB∽△DCA,
∴=.
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象交轴于两点,交轴于点,点的坐标为,顶点的坐标为.
(1)求二次函数的解析式和直线的解析式;
(2)点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;
(3)在抛物线上是否存在异于的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,把点先向右平移1个单位,再向上平移2个单位的平移称为一次斜平移.已知点A(1,0),点A经过n次斜平移得到点B,点M是线段AB的中点.
(1)当n=3时,点B的坐标是 ,点M的坐标是 ;
(2)如图1,当点M落在的图像上,求n的值;
(3)如图2,当点M落在直线上,点C是点B关于直线的对称点,BC与直线相交于点N.
①求证:△ABC是直角三角形
②当点C的坐标为(5,3)时,求MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点 A、与y轴交于点B,连接AB.
(1)求证:P为线段AB的中点;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C.
(1)试求这个抛物线的表达式;
(2)如果这个抛物线的顶点为M,求△AMC的面积;
(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,直径垂直于弦,垂足为,连结,将沿翻转得到,直线与直线相交于点.
(1)求证:是的切线;
(2)若为的中点,,求的半径长;
(3)①求证:;
②若的面积为,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为 ;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com